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ABSTRACT

Large Deviations and Quasipotential for finite state mean field interacting particle systems

Report Title

We study a general class of mean field interacting particle systems with a finite state space. Particles evolve as 
exchangeable jump Markov processes, where finite collections of particles are allowed to change their state 
simultaneously. Such models arise naturally in statistical physics, queueing systems and communication networks 
literatures.

In the first part of the thesis, we establish a large deviation principle for the empirical measure process for the 
interacting particle systems. The approach is based on a variational representation for functionals of a Poisson 
random measure. Under an appropriate communication condition, we also prove a locally uniform large deviation 
principle. The main novelty is that more than one particle is allowed to change its state simultaneously, and so a 
standard approach to the proof based on change of measure is not possible. Along the way, we establish an LDP for 
jump Markov processes on the simplex, whose rates decay to zero as they approach the boundary of the domain. This 
result may be of independent interest.

In the second part of the thesis, we focus on the mean field interacting particle systems that only admit single particle 
jumps. Under the assumption that there exists a unique stationary measure, we construct a Markov chain 
approximation of the quasipotential function associated with the equilibrium. This is the first example of the Markov 
chain approximation for problems with non-quadratic running cost (but still convex in the control), which may also 
have singularities near the boundary.
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Abstract of “ Large Deviations and Quasipotential for finite state mean field inter-
acting particle systems ” by Wei Wu, Ph.D., Brown University, May 2014

We study a general class of mean field interacting particle systems with a finite

state space. Particles evolve as exchangeable jump Markov processes, where finite

collections of particles are allowed to change their state simultaneously. Such models

arise naturally in statistical physics, queueing systems and communication networks

literatures.

In the first part of the thesis, we establish a large deviation principle for the

empirical measure process for the interacting particle systems. The approach is

based on a variational representation for functionals of a Poisson random measure.

Under an appropriate communication condition, we also prove a locally uniform large

deviation principle. The main novelty is that more than one particle is allowed to

change its state simultaneously, and so a standard approach to the proof based on

change of measure is not possible. Along the way, we establish an LDP for jump

Markov processes on the simplex, whose rates decay to zero as they approach the

boundary of the domain. This result may be of independent interest.

In the second part of the thesis, we focus on the mean field interacting particle

systems that only admit single particle jumps. Under the assumption that there

exists a unique stationary measure, we construct a Markov chain approximation of

the quasipotential function associated with the equilibrium. This is the first example

of the Markov chain approximation for problems with non-quadratic running cost

(but still convex in the control), which may also have singularities near the boundary.
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2

Markovian particle systems on finite state spaces under mean-field interactions arise

in many different contexts. They may appear as approximations of statistical physics

models in higher dimensional lattices (for various type of spin dynamics, see [33], and

references therein) and kinetic theory [25]. Recently, this type of model also appears

in modeling communication networks [1], [21], [23], [38], and game theory [22]. The

dynamics of these particle systems have the following common features: a) particles

are exchangeable, that is, their joint distribution is invariant under permutation of

their indices; b) at each time, some group of finitely many particles can switch their

state simultaneously; c) the interaction between particles is global but weak, in the

sense that the jump rate (of each group of particles) is a function of the initial and

final configurations only of the group of particles, and the empirical measure of all

particles. The precise dynamics of the Markovian n−particle system we consider are

described in Section 2.1.

Due to the exchangeability assumption, many essential features of the state of

the particle system can be captured by its empirical measure, which evolves as a

jump Markov process on (a sublattice of) the unit simplex. Under mild assumptions

on the jump rates, standard results on jump Markov processes (see [34]) show that

the functional law of large numbers limit of the sequence of n−particle empirical

measures is the solution to a nonlinear ordinary differential equation (ODE) on the

unit simplex. The ODE also characterizes the transition probabilities of a certain

“nonlinear Markov process” [26] that describes the limiting distribution of a typical

particle in the system, as the number of particles goes to infinity, and is commonly

referred to as the McKean-Vlasov limit. The first question we address is the sample

path large deviation properties of the sequence of empirical measure processes as the

number of particles tends to infinity. In the case of interacting diffusion processes,

such an LDP was first established by Dawson and Gartner in [9]. The sample path
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3

large deviation principle over finite time intervals has a number of applications,

including the study of metastability properties (via Freidlin-Wentzell theory [20]),

or to quantify the fact that a Gibbs measure may evolve into a non-Gibbs measure

(i.e., no reasonable Hamiltonian can be defined) under stochastic dynamics (which

is called the Gibbs-non Gibbs transtions in [39]).

Large deviations principles for jump Markov processes are known if the jump

rates are Lipschitz continuous and uniformly bounded away from zero (cf. [36]).

In this case, the large deviation rate function admits an integral representation in

terms of a so-called local rate function. However, this condition is not satisfied by

our model. Specifically, as the empirical measure approaches the boundary of the

simplex, its jump rates along certain directions converge to zero. Nevertheless, we

show that (under general conditions on the jump rates), the sequence of empirical

measure processes satisfies a sample path LDP with the rate function having the

standard integral representation. Under mild conditions, we also establish a “locally

uniform” refinement [36], which characterize the decay rate of the probabilities of

hitting a convergent sequence of points. Such result is of relevance only for discrete

Markov processes (and not for diffusions) and does not follow immediately from the

LDP. Indeed, we provide an example (Example 3.1.26 in Section 3.1.4) where the

sample path LDP holds, but its locally uniform refinement does not. The locally

uniform refinement is shown in [7] to be relevant for the study of stability properties

of the nonlinear ODE that describes the law of large numbers (LLN) limit. All the

main results of this paper are formulated for a more general class of jump Markov

processes on the simplex whose rates diminish to zero at the boundary, and the

interacting particle models are obtained as a special case.

Other works that have studied large deviations for jump Markov processes with

vanishing rates include [35], [30] and [3]. However, the results in [35] impose special

17



4

conditions on the jump rates near the boundary, which do not apply to our model (see

Appendix A). On the other hand, the method in [30] and [3] are adaptations of the

argument used by Dawson and Gartner in [9], which crucially relies on the fact that

the measure on path space induced by the interacting n−particle process is absolutely

continuous with respect to that induced by n independent (non-interacting) particles,

each evolving according to a time inhomogenous Markov process. This property does

not hold when multiple particles jump simultaneously. Simultaneous jumps are a

common feature of models used in many applications (see Example 2.4.3 and also

[38] and [18, Chapter 8]).

The large deviation upper bound follows from general results in [13] (see Section

3.4). The subtlety is to prove the large deviation lower bound. Our strategy for the

proof is based on a variational representation for the n−particle empirical measure

process and a perturbation argument near the boundary. The starting point of our

variational representation is a representation formula for the functionals of Poisson

random measures [6], and an SDE representation of the empirical measure process

in terms of a sequence of Poisson random measures. However, the state dependent

nature of the jump rates leads to a somewhat complicated variational problem. We

use the special structure of the SDE to simplify the representation formula. The

perturbation argument takes inspiration from [15], where an LDP was established

for a discrete time one dimensional Markov chain. Our model is higher dimensional,

where the perturbation argument becomes substantially more intricate, and geom-

etry comes into play. The variational representation that we establish holds more

generally for jump Markov processes with bounded jump rates, and could be useful

for obtaining other asymptotics.

In the situation when the law of large numbers dynamics of the Markov process

has multiple attractors in a domain, the system typically spends a long time in a small

18



5

neighborhood of an attractor and rarely makes an excursion away from it. After a

long time and multiple excursion attempts, a large fluctuation occurs and makes one

of these attempts succeed, so the system approach one of the other attractors. Such

phenomena of noise induced rare jumps between attractors is called metastability.

The work of Freidlin and Wentzell establishes the connections between large de-

viation principle and the metastable properties of the underlying Markov process. A

key notion in their framework is the so called quasipotential, which has a representa-

tion takes the form of calculus of variations (as an exit problem). The quasipotential

provides important information that can be used to study transitions of the inter-

acting particle systems between different regions of the domain. It provides the

asymptotic descriptions of the likelihood of a path and the exit distribution from a

domain (at the level of exponential rates) when such a transition happens.

In most cases, one cannot obtain an explicit solution for the quasipotential, and

therefore a numerical approximation is needed. A standard method for the construc-

tion of approximations in optimal control problems is the Markov chain approxima-

tion method. This method is based on directly approximating the controlled process

that appear in the variational problem by a finite state controlled Markov chain,

and define an analogous minimal cost function as the approximation. This method

has been used in the context of [28], [29], [4], [16] and so on, and is especially useful

when the corresponding PDE characterization (Hamilton-Jacobi-Bellman equations)

is not well defined or difficult to work with.

There are many standard cost structure for which the convergence of the Markov

chain approximation as the discretization goes to zero is well known. However, our

cost structure is novel, in the sense that the linear quadratic structure (and strict

positivity) of the running cost no longer hold, and the boundary of the associated
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exit problem is a singleton. We adapt the method of [29] and [4] in our setting,

and in an upcoming work [17] we prove a convergence result of the approximation

problem.

The outline of this paper is as follows. In Chapter 2 we set up the mean field

interacting particle system, and describe a few examples in the literature that fit into

our framework. Chapter 3 is devoted to the proof of the large deviation principle for

the empirical measure process for such interacting particle systems. Some technical

details are deferred to Appendix B and C. In Chapter 4, we restrict to the mean

field interacting particle system with single particle jumps. We construct Markov

chain approximations of the quasipotential function associated with the stationary

measure of such interacting particle systems, and give a proof of convergence. Finally,

in Appendix A we briefly describe why the conditions in [35] do not apply to our

large deviation problem.
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8

2.1 Model Description

Here we introduce the finite state mean-field interacting particle system. Consider

an n-particle system in which the state of each individual particle takes values in

the finite set X = {1, 2, ..., d}. Let P (X ) denote the space of probability measures

on X . We identify P (X ) with the simplex S = {p ∈ R
d : pi ≥ 0,

∑d
i=1 pi = 1}

and endow S with the topology induced from R
d, so that P (X ) is equipped with

the Euclidean norm ‖·‖. Define Pn (X ) =
{

1
n

∑n
i=1 δxi

: x ∈ X n
}

⊂ P (X ), where δx

represents the Dirac mass at x. Then Pn (X ) can be similarly identified with the

lattice Sn = S ∩ 1
n
Z

d.

For each i = 1, ..., n, let Xi,n (t) be the state of the ith particle at time t. We as-

sume that the sequence of processesXn (·) = {Xn (t) = (X1,n (t) , ..., Xn,n (t)) , t ≥ 0},

n ∈ N, are defined on a probability space (Ω,F ,P). Each Xn (·) evolves as a càdlàg,

X n-valued jump Markov process. The associated empirical measure is denoted by

µn (t, ω) =
1

n

n
∑

i=1

δXi,n(t,ω), t ≥ 0, ω ∈ Ω.

In subsequent discussions, we will often suppress the dependence on ω.

The possible transitions of Xn are as follows. It is assumed that there exists

K ∈ N such that at most K particles jump simultaneously. When K = 1, then

almost surely at most one particle can instantaneously change its state. If the particle

changes its state from i to j, for some i, j ∈ X , the transition rate is assumed to

be Γn
ij (µn (t)), where {Γn (x) , x ∈ S} is a family of nonnegative d× d matrices, and

to be consistent with a convention used when K > 1 we set Γn
ii (x) = 0. In the

case of general K, for each 1 ≤ k ≤ K, an ordered collection of k particles among

all possible ordered k−tuples of the n−particle system can simultaneously change

22



9

its configuration from i =(i1, .., ik) ∈ X k to j =(j1, ..., jk) ∈ X k, where il 6= jl, for

l = 1, ..., k. Note that it is possible that several particles may be in the same state.

Let

J k =
{

(i, j) ∈ X k ×X k : il 6= jl for l = 1, ..., k
}

be the collection of all possible pairs of initial and final configurations for an ordered

k−tuple of particles. At time t, the rate of a simultaneous jump of a k−tuple from

i ∈ X k to j ∈ X k is given by Γk,n
ij (µn (t)), where

{

Γk,n (x) , x ∈ S
}

is a family of

nonnegative dk × dk matrices with Γk,n
ij (x) ≡ 0 if (i, j) /∈ J k. We also assume the

jump rate is independent of the ordering of the particles: if Sk denotes the group of

permutations on {1, ..., k}, then

Γk,n
ij (x) = Γk,n

σ(i)σ(j) (x) , for any n ∈ N, k = 1, ..., K, x ∈ S and σ ∈ Sk. (2.1.1)

2.2 Dynamics of the Empirical Measure Process

If the initial condition is exchangeable, then it is clear that the n−particle system

described above is exchangeable, and thus its state can be described by the empirical

measure µn.

The empirical measure process {µn (t) , t ≥ 0} is a càdlàg jump Markov process

that takes values in Sn. We now identify its generator Ln. Let {ei, i = 1, ..., d}

represent the standard basis of R
d. When K = 1, the possible jump directions of

µn (·) lie in the set 1
n
V1, where V1 = {ej − ei, (i, j) ∈ J 1}. Moreover, the number of

particles in state i when the empirical measure is equal to x ∈ Sn is nxi. Hence, the

23
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jump rate of µn (·) in the direction 1
n

(ej − ei) is nxiΓ
1,n
ij (x), and Ln takes the form

Ln (f) (x) = n
∑

(i,j)∈J 1

xiΓ
1,n
ij (x)

[

f

(

x+
1

n
(ej − ei)

)

− f (x)

]

(2.2.1)

for any bounded function f : Sn 7→ R.

In the general case when K ∈ N, for 1 ≤ k ≤ K, i = {i1, ..., ik} ∈ X k, n ∈ N

and x ∈ Sn, let y ∈ X n be a collection of n particles whose empirical measure is x.

Define Ak (n, i, x) to be the number of ordered subsets of {1, ..., n} of size k, with

the property that if (j1, . . . , jk) is the subset, then (yj1, . . . , yjk
) = (i1, . . . , ik), i.e.,

the lth particle in the subset is in state il. Then Ak (n, i, x) takes the form

Ak (n, i, x) = nk

k
∏

l=1

xil +O
(

nk−1
)

, (2.2.2)

where the error term is non-zero when the states {il}k
l=1 are not all distinct.

For k = 1, ..., K and i ∈ X k, denote ei =
∑k

l=1 eil, and define V =∪K
k=1 Vk, where

Vk =
{

ej − ei: (i, j) ∈ J k
}

.

We call v = ej − ei the jump direction associated with (i, j).

Lemma 2.2.1. The generator of the Markov process {µn (·)} is given by

Ln (f) (x) = n
K
∑

k=1

∑

(i,j)∈J k

αk,n
ij (x)

[

f

(

x+
1

n
ej −

1

n
ei

)

− f (x)

]

(2.2.3)

for any bounded function f : Sn 7→ R, with

αk,n
ij (x) =

1

n(k!)
Ak (n, i, x)Γk,n

ij (x) , x ∈ Sn. (2.2.4)
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Alternatively, the generator can be written as

Ln (f) (x) = n
∑

v∈V
λn

v (x)

[

f

(

x+
1

n
v

)

− f (x)

]

, (2.2.5)

where

λn
v (x) =

K
∑

k=1

∑

(i,j)∈J k:

ej−ei=v

αk,n
ij (x) . (2.2.6)

Proof. Define an equivalence relation ∼ on J k as follows: for (i1, j1) , (i2, j2) ∈ J k,

(i1, j1) ∼ (i2, j2) if and only if there exists σ ∈ Sk such that σ (i1) = i2, σ (j1) = j2.

Let [i, j] denote the equivalence class containing (i, j),
[

J k
]

denote the collection

of equivalence classes, and define Sk [i, j] = {σ ∈ Sk : σ (i) = i, σ (j) = j}. Since the

particles are assumed indistinguishable, when (i1, j1) ∼ (i2, j2), the jump associated

with (i1, j1) coincides with the jump associated with (i2, j2). Therefore, given (i, j) ∈

J k, the number of distinguishable ordered k−tuple transitions from configuration i

to j is equal to Ak(n,i,x)
|Sk[i,j]| . By the permutation symmetry (2.1.1), we can set Γk,n

[i,j] (·) =

Γk,n
ij (·), and the generator of the Markov process {µn (·)} is given by

Ln (f) (x) =
K
∑

k=1

∑

[i,j]∈[J k]

Ak (n, i, x)

|Sk [i, j]| Γk,n
[i,j] (x)

[

f

(

x+
1

n
ej −

1

n
ei

)

− f (x)

]

, x ∈ Sn

(2.2.7)

for any bounded function f : Sn 7→ R.

An alternative way is to write the generator (2.2.7) as a sum over J k rather

than over
[

J k
]

. Noting that |[i, j]| = |Sk |
|Sk[i,j]| = k!

|Sk [i,j]| , we can rewrite (2.2.7) as in

(2.2.3).

We will state and prove our results in the formulation of Markov processes with

generator (2.2.5); the precise implications for the original n−particle system are
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described in Section 3.1.4.

2.3 The Law of Large Numbers Limit

The functional law of large numbers (LLN) result for general interacting jump pro-

cesses was established in [34] (see also [27]). Since the properties of the law of large

numbers trajectory will be used in the large deviation proof, for completeness we

present a proof for our interacting particle system (Theorem 2.3.2) in Section 3.3.3.

The following condition is used to obtain a unique law of large numbers limit.

Condition 2.3.1. For each v ∈ V, there is Lipschitz continuous λv : S → R such

that λn
v (·) converges uniformly to λv (·) on S.

We also define

M = sup
v∈V ,x∈S

λv (x) <∞. (2.3.1)

We now state a well known law of large numbers result for the sequence of

processes {µn}n∈N
[34].

Theorem 2.3.2. Assume the family of jump rates {λn
v (·) : v ∈ V , n ∈ N} satisfy

Condition 2.3.1. Also, assume µn (0) converges in probability to µ0 ∈ P (X ) as n

tends to infinity. Then {µn (·)}n∈N
converges (uniformly on compact time intervals)

in probability to µ (·), where µ (·) is the unique solution to the nonlinear Kolmogorov

forward equation

µ̇ (t) =
∑

v∈V
vλv (µ (t)) , µ (0) = µ0. (2.3.2)
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We now describe the LLN limit for the interacting particle systems. We first state

an assumption on the rates {Γk,n
ij (·) , (i, j) ∈ J k, k = 1, ..., K, n ∈ N} that implies

Condition 2.3.1.

Condition 2.3.3. For every k = 1, ..., K and (i, j) ∈ J k, there is Γk
ij : S → R

such that for every x ∈ S and sequence xn ∈ Sn, n ∈ N, such that limn→∞ xn = x,

Γk
ij (x) = limn→∞ nk−1Γk,n

ij (xn), and the family of rate matrices {Γk,n
ij (·)} satisfies the

permutation symmetry (2.1.1). Also, each αk
ij (·) is Lipschitz continuous, where

αk
ij (x) = lim

n→∞
αk,n

ij (x) =
1

k!

k
∏

l=1

xilΓ
k
ij (x) . (2.3.3)

Given a Markov process with generator (2.2.3), one can always define a single

particle jump process, with the jump rate matrix

Γn,eff
ij (x) =

K
∑

k=1

∑

(i,j)∈J k

k
∑

l=1

αk,n
ij (x)

xi
1{i=il ,j=jl}, x ∈ S (2.3.4)

for (i, j) ∈ J 1 and n ∈ N. When xi = 0, αk,n
ij (x) /xi is understood as the pointwise

limit of αk,n
ij (y) /yi, when y lies in the relative interior of S and y → x in the

Euclidean norm. Here the superscript “eff” stands for “effective,” and indicates that

the single jump process will have the same LLN limit (2.3.2). Indeed, from Condition

2.3.3, it is clear that for each x ∈ S, Γn,eff
ij (x) converges, as n→ ∞, to

Γeff
ij (x) =

K
∑

k=1

∑

(i,j)∈J k

k
∑

l=1







k
∏

r=1
r 6=l

xir






Γk

ij (x) 1{i=il ,j=jl}. (2.3.5)

Moreover, if Condition 2.3.3 holds, then the jump rates {λn
v}v∈V defined by (2.2.6)
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satisfy Condition 2.3.1, with

λv (x) =

K
∑

k=1

∑

(i,j)∈J k:
ej−ei=v

αk
ij (x) , (2.3.6)

However, as elaborated in Example 3.1.26, the large deviation behavior of these two

systems can be quite different.

2.4 Examples

The particle systems that we describe naturally occur in a wide range of areas, in-

cluding statistical mechanics (Curie-Weiss model), graphical models and algorithms,

networks and queueing systems (rerouting, loss networks). We present a few illus-

trative examples below.

Example 2.4.1. Opinion dynamics of the Curie-Weiss model [11]. This is a mean

field model on a complete graph. Let d = 2, and as before, let n be the number of

individuals and Xi,n (t) ∈ {−1, 1} denote the opinion of the ith individual at time

t. At time 0, each individual takes opinions Xi,n (0) independently and uniformly

at random. Each individual has an i.i.d Poisson clock of rate 1. If the clock of

individual i rings at time t, he/she computes the opinion imbalance

M (i) =
∑

j 6=i

Xj,n (t−) ,

and changes opinion with probability

Pflip

(

Xi,n (t)
)

=











exp
(

−2β
∣

∣M (i)
∣

∣ /n
)

if M (i)Xi,n (t−) > 0

1 otherwise.
,
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The empirical measure process µn only takes jumps of the form

V = {ej − ei, i, j ∈ {−1, 1}}. It satisfies Condition 2.3.3 with Γ = Γ1, and

Γ1,−1 (µ) =











exp (−2β (µ1 − µ−1)) if µ1 − µ−1 > 0

1 otherwise.
,

Γ−1,1 (µ) =











exp (−2β (µ−1 − µ1)) if µ1 − µ−1 < 0

1 otherwise.
,

and Γ1,1 (µ) = Γ−1,−1 (µ) = 0.

A generalization of the above example is the Curie-Weiss-Potts model with

Glauber dynamics, which we described below, the mixing time of which has in-

teresting phase tranistion properties (see [31]).

Example 2.4.2. Glauber dynamics of Curie-Weiss-Potts model. Fix n > 0, Xi,n

are interpreted as spins that take value in X = {1, ..., d}. Let X = {X1,n, ..., Xn,n}.

Given β > 0, the Curie-Weiss distribution is a probability measure on X n, given by

νn (X) = Z−1
β,n exp

(

−β
n

n
∑

i=1

n
∑

j=i+1

1{Xi,n=Xj,n}

)

,

where Zβ,n is the normalizing constant. The continuous time Glauber dynamics

(Xt)t≥0 for the spin flips is defined as follows. Each particle has an i.i.d Poisson

clock of rate 1 attached to it. Assume the clock at particle i rings at time t, we set

the new value of Xi,n to be

k ∈ X with probability νn

(

Xi,n = k|Xj,n = Xj,n (t−) , ∀j 6= i
)

The empirical measure µn is interpreted as the magnitization, which evolves as a
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Markov process with generator (2.2.1), with

Γ1,n
ij (x) =

exp
(

−β
n

(nxi − 1)
)

∑d
k=1 exp

(

−β
n

(nxk − 1)
) , for x ∈ Sn.

Therefore, for x ∈ S,

α1
ij (x) = lim

n→∞
xiΓ

1,n
ij (x) = xi

exp (−βxi)
∑d

k=1 exp (−βxk)
.

Simultaneous jump models arise naturally in the context of communication net-

works. We now provide one such example, from [21]. Many more can be found in

[38], [33] and [24].

Example 2.4.3. Alternative rerouting networks [21]. Consider a network that con-

sists of n links, each with finite capacity C. Let X = {0, ..., C} and let Xi,n denote

the number of customers using link i. At each time t, customers or packets arrive

to each link as a Poisson process with rate λ > 0. If a packet arrives to a link with

spare capacity, then it is accepted to the link and occupies one unit of capacity for an

exponentially distributed time with mean one. On the other hand, if a packet arrives

to a link that is fully occupied, two other links are choosen uniformly at random from

amongst the remaining n− 1 links. If both chosen links have a unit of spare capacity

available, the packet occupies one unit of capacity on each of the two links, for two

independent, exponential clocks with mean one. Otherwise, the packet is lost. This

model seeks to understand the impacts by allowing alternative routes that occupy a

greater number of resources.

The empirical measure process µn is a jump Markov process with jump rates
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summarized as follows: for any i, j ∈ X :

µn →



































µn + 1
n

(ei+1 − ei) at rate nλµn
i 0 ≤ i ≤ C − 1,

µn + 1
n

(ei−1 − ei) at rate niµn
i 1 ≤ i ≤ C,

µn + 1
n

(ei+1 − ei + ej+1 − ej) at rate 2λ
n3µn

c µn
i µn

j

(n−1)(n−2)
0 ≤ i 6= j ≤ C − 1,

µn + 2
n

(ei+1 − ei) at rate λ
n2µn

c µn
i (nµn

i −1)
(n−1)(n−2)

0 ≤ i ≤ C − 1.

This model satisfies Condition 2.3.3 with K = 2, and with matrix entries

Γ1
i,i+1 (µ) = λ, Γ1

i,i−1 (µ) = i, Γ2
(i,j),(i+1,j+1) (µ) = λµc

and zero otherwise. By (2.3.5), we can calculate the effective jump rate as

Γeff
ij (µ) = Γ1

ij (µ) +
∑

i′ 6=i,j′ 6=j
i′ 6=j′

2µi′Γ
2
(i,i′),(j,j′) (µ) + µiΓ

2
(i,i),(j,j) (µ) ,

which gives Γeff
i,i+1 (µ) = λ+2

∑

i′ 6=i µi′λµc+µiλµc = λ [1 + µc (2 − µi)], Γeff
i,i−1 (µ) = λ,

and Γeff
ij (µ) = 0 otherwise.
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This chapter is organized as follows. In Section 3.1 we state the main result, which

is a sample path LDP for a general class of state dependent jump Markov process

(with rates that are allowed to vanish) as well as its locally uniform refinement. We

also describe how the general result specializes to the mean field interacting particle

systems. In Section 3.2 we verify the conditions of the main results for the empirical

measure processes associated with a large class of interacting particle systems. Sec-

tion 3.3 establishes the variational representation for the empirical measure process,

and provides an alternative proof for the functional LLN limit. Some details of the

proof of the variational representations are deferred to Appendix B. The sample path

large deviation upper and lower bounds are derived in Sections 3.4 and 3.6, respec-

tively, while in Section 3.5 we study properties of the local rate function. Section 3.7

is devoted to the proof of the locally unifom LDP.

3.1 Main Results

3.1.1 The large deviation principle

In practice one is often interested in estimating the tail probability P (µn (·) ∈ A)

for certain sets A that do not contain the law of large numbers limit µ (·). This

can be studied in the framework of a large deviation principle. We first establish a

sample path large deviation principle for the sequence {µn}n∈N
. Asymptotics of the

tail probabilities at a given time t will follow from the contraction principle. For

simplicity we assume from now on that t ∈ [0, 1], while all results in this paper can

be established for t in any compact time interval by the same argument.

As is explained in the introduction, a large deviation upper bound for jump-
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diffusion Markov processes was obtained in [13], their local rate function can be

identified with ours (see Section 3.4). The more delicate part is the proof of the

large deviation lower bound. Since the transition rates of µn may tend to zero as

µn approaches the boundary of S, the local rate function can approach ∞, and the

probability decays superexponentially. Our analysis requires that the jump rates go

to zero at most polynomially when approaching the boundary, which is sufficient for

most of the applications, and is formulated in the condition below.

Condition 3.1.1. There is a continuous function f0 : [0, 1] → [0,∞) with f0 (0) = 0,

and constants C1, C2 <∞ such that for any x, y ∈ S and v ∈ V

C1

d
∑

i=1

(log xi − log yi) + f0 (‖x− y‖) ≥ log λv (x) − log λv (y)

≥ C2

d
∑

i=1

(log xi − log yi) − f0 (‖x− y‖) .

Let int(S) denote the relative interior of S.

Remark 3.1.2. Condition 3.1.1 implies that on any compact subset of int(S), λv (·)

is either identically zero or uniformly bounded below away from zero.

Another ingredient that is required for the proof of the large deviation lower

bound is an upper bound on the time (or, a lower bound on the speed) taken by the

law of large numbers path to hit a compact subset of int(S).

Condition 3.1.3. There exist constants b > 0 and D < ∞, such that for any

x ∈ S, the law of large numbers path µ starting at x, as defined by (2.3.2), satisfies

µi (t) ≥ btD for t ∈ [0, 1].

For t ∈ [0, 1] and G ⊂ R
d, let D ([0, t] : G) denote the space of càdlàg functions

on [0, t] which takes value in G, and let AC ([0, t] : G) denote the space of absolutely
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continuous functions on [0, t] that take values in G. To avoid singularities in the large

deviation analysis, we need to assume a certain communication condition. This is

formulated precisely in Condition 3.1.4 below. In what follows, given t > 0 and a

path φ ∈ AC ([0, t] : S), let

Len (φ) =

∫ t

0

∣

∣

∣
φ̇ (s)

∣

∣

∣
ds (3.1.1)

denote the length of the image of φ.

Condition 3.1.4. There exist constants c > 0 and c′, p < ∞, such that for every

x ∈ S and y ∈int(S), there exist t ∈ (0, 1), Fy ∈ N, and a piecewise linear path φ

with φ (0) = x, φ (t) = y, such that

i). there exist Fx,y ≤ Fy, {vm}Fx,y

m=1 ⊂ V, 0 = t0 < t1 < · · · < tFx,y = t,

{Um}Fx,y

m=1 ⊂ R
+, such that

φ̇ (s) =

Fx,y
∑

m=1

Umvm1[tm−1,tm) (s) , a.e. s ∈ [0, t] , (3.1.2)

ii). for m = 1, ..., Fx,y,

λvm (φ (s)) ≥ c

(

min
i=1,...,d

yi

)p

, for s ∈ [tm−1, tm),

iii). Len(φ) scales with the Euclidean distance between x and y: Len(φ) ≤

c′ ‖x− y‖ .

Definition 3.1.5. Given x, y ∈ S, a path φ that satisfies properties i)−iii) will

be said to be a communicating path (with respect to the constants c, p, c′, jump

directions V and jump rates {λv}v∈V).
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Remark 3.1.6. There is some flexibility in the choice of t, {Um}Fx,y

m=1 and {tm}Fx,y

m=1.

By a reparametrization of the path, we can always assume t = 1 and Um = U for

every m. Moreover, if t is not fixed, we can always choose Um = 1. We will make

these additional assumptions when convenient.

We now introduce an easily verifiable sufficient condition on the jump rates

{λv}v∈V which, together with Conditions 3.1.1 and 3.1.4, implies Condition 3.1.3.

Condition 3.1.7. There exists C <∞, such that for any x ∈ S and any v ∈ V and

i ∈ X that satisfy 〈v, ei〉 < 0, λv (x) ≤ Cxi.

Remark 3.1.8. For the interacting particle systems that we study, λv (·) is specified

explicitly by (2.3.6) and (2.3.3), and therefore satisfies Condition 3.1.7. Also, if

{λv (·)}v∈V are Lipschitz continuous, then Condition 3.1.7 can be replaced by: for

any v ∈ V and i ∈ X that satisfy 〈v, ei〉 < 0, λv (x) = 0 if xi = 0.

Lemma 3.1.9. Assume that {λv (·)}v∈V satisfies Conditions 3.1.1, 3.1.4 and 3.1.7.

Then Condition 3.1.3 is satisfied with D =
∑F

i=0 d
i, for some F <∞.

The proof of Lemma 3.1.9 is deferred to Section 3.2.3.

We now state our first large deviation result. Let ∆d−1 = {x ∈ R
d :
∑d

i=1 xi = 0}.

For x ∈ S and β ∈ ∆d−1, define

L (x, β) = inf
q:

P

v∈V vqv=β

∑

v∈V
λv (x) `

(

qv

λv (x)

)

, (3.1.3)

where q is a vector with nonnegative components, and

` (x) =











x log x− x+ 1 x ≥ 0,

∞ x < 0,
(3.1.4)
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is the local rate function for a standard Poisson process. For t ∈ [0, 1] and an

absolutely continuous function γ : [0, t] 7→ S, define

It (γ) =

∫ t

0

L (γ (s) , γ̇ (s)) ds, (3.1.5)

and in all the other cases, set It (γ) = ∞. We will write I (γ) to denote I1 (γ).

In what follows we equip D ([0, 1] : S) with Skorohod topology, and let

B (D ([0, 1] : S)) be the associated Borel sets.

Theorem 3.1.10. Suppose the family of jump rates {λv (x) , x ∈ S, v ∈ V} satisfies

Conditions 2.3.1, 3.1.1, 3.1.3 and 3.1.4. Also, assume that the initial conditions

{µn (0)}n∈N
are deterministic, and µn (0) → µ0 ∈ P (X ) as n tends to infinity.

Then the corresponding sequence of empirical measure processes {µn}n∈N
satisfies

the sample path large deviation principle (LDP) with rate function I. Specifically,

for any measurable set A ∈ B (D ([0, 1] : S)), we have the large deviation lower bound

lim inf
n→∞

1

n
log P (µn ∈ A) ≥ − inf {I (γ) : γ ∈ A◦, γ (0) = µ0} (3.1.6)

and the upper bound

lim sup
n→∞

1

n
log P (µn ∈ A) ≤ − inf

{

I (γ) : γ ∈ A, γ (0) = µ0

}

. (3.1.7)

Moreover, for any compact set K ⊂ S and M <∞, the set

{γ ∈ AC ([0, 1] : S) : I (γ) ≤M, γ (0) ∈ K} (3.1.8)

is compact.

The space D ([0, 1] : S) is naturally equipped with Skorohod topology. However,
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as is shown in Lemma 2.4 of [13], to prove the large deviation result (Theorem

3.1.10), one can approximate a path in D ([0, 1] : S) by a piecewise linear path, thus

it suffices to consider the uniform topology. The proof of Theorem 3.1.10 is deferred

to Section 3.4 and 3.6. Applying the contraction principle (see, e.g., [40]) one obtains

the variational representation of the rate function of {µn (t)}n∈N
for any t ∈ [0, 1].

Corollary 3.1.11. Suppose the conditions of Theorem 3.1.10 hold. Then for each

t ∈ [0, 1], the sequence of random variables {µn (t)}n∈N
satisfies the LDP with rate

function

Jt (µ0, x) = inf {It (γ) : γ ∈ D ([0, 1] : S) , γ (0) = µ0, γ (t) = x} (3.1.9)

3.1.2 A locally uniform refinement

In applications, it is often useful to estimate the probability that µn hits a specific

point cn ∈ Sn at some given time, where cn → c ∈ S as n→ ∞. The ordinary LDP

does not imply an asymptotic rate for this hitting probability since it applies only

to fixed sets, and the “moving” set {cn} in the present case has empty interior. To

obtain such a “locally uniform” result we need a strengthening of the communication

condition (Condition 3.1.4), and require local controllability of the Markov process

up to the boundary of S. It turns out that a polynomial lower bound for jump rates

up to the boundary ((3.1.10) below) is sufficient for local controllability.

Definition 3.1.12. Given c′, p, p1 < ∞ and c, c1 > 0, for any x, y ∈ S, a path

φ from x to y is said to be strongly communicating, if it is communicating (with

respect to c, p, c′), and, in addition,

iv). there exists F <∞, such that supy∈S Fy ≤ F ,
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v). if φ has the representation (3.1.2), then for m = 1, ..., Fx,y,

λvm (φ (s)) ≥ c1

(

∏

j∈Nm

φj (s)

)p1

, s ∈ [tm−1, tm), (3.1.10)

where

Nm = {j : 〈ej, vm〉 < 0} . (3.1.11)

Note that when y is on ∂S, mini=1,...,d yi = 0, and therefore Condition 3.1.4.ii) is

trivially satisfied. Thus a polynomial lower bound (3.1.10) is indeed a strenghthening

when dealing with paths near the boundary.

Definition 3.1.13. Given c1 > 0 and c
′
, p1 < ∞, for any x, y ∈ Sn, a set of points

{φ0, φ1, ..., φk} ⊂ Sn with φ0 = x, φk = y is called a discrete strongly communi-

cating path, if they satisfy the following properties analogous to Definition 3.1.12:

i). There exist F < ∞ (independent of x and y), {vm}F
m=1 ⊂ V, and 0 = t0 <

t1 < · · · < tF = k, such that

φs+1 − φs =
1

n
vm, s ∈ [tm−1, tm). (3.1.12)

ii). For all n sufficiently large, and m = 1, ..., F ,

λn
vm

(φs) ≥ c1

(

∏

j∈Nm

(φs)j

)p1

, s ∈ [tm−1, tm). (3.1.13)

iii). k ≤ cn ‖x− y‖.

In the weakly interacting particle systems we consider, {λv (x)} are specified by
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(2.3.6) and (2.3.3), and each λv (x) is therefore a linear combination of monomials in

x multiplied by a Lipschitz function in x. Also, {λn
v (x)} can be specified by (2.2.6)

and (2.2.4). Thus the polynomial type lower bound in (3.1.10) and (3.1.13) holds

for the particle systems.

Condition 3.1.14. i). There exist constants c′, F, p, p1 <∞ and c, c1 > 0, such that

for any x, y ∈ S, there exists a strongly communicating path φ that connects x to y

(with respect to c′, F, c, p, c1, p1).

ii). For any n ∈ N and any x, y ∈ Sn, there exists a discrete strongly communi-

cating path φn that connects x to y (with respect to c′, F, c1, p1).

Clearly, Condition 3.1.14 is a strengthening of Condition 3.1.4. We now state the

locally uniform LDP result, which is proved in Section 3.7.

Theorem 3.1.15. Suppose the family of jump rates {λn
v (x) , x ∈ S, v ∈ V}n∈N

sat-

isfies Conditions 2.3.1, 3.1.1, 3.1.3 and 3.1.14. Also, assume the initial conditions

{µn (0)}n∈N
are deterministic, and µn (0) → µ0 ∈ P (X ) as n tends to infinity. Let

{xn}n∈N
⊂ Sn, x ∈ S be such that xn → x as n→ ∞. Then for any t ∈ [0, 1),

lim
n→∞

1

n
log P (µn (t) = xn) = −Jt (µ0, x) ,

where Jt is as defined in (3.1.9).

3.1.3 LDP for invariant measures

In [20], a uniform sample path LDP for small noise diffusions (with respect to initial

conditions) is used to study its metastability properties, including the mean exit
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time, most likely exit location from a given domain, and the LDP for invariant

measures. The program of [20] was carried out for non-degenerate diffusions in R
d;

here we have a sequence of jump processes on lattice approximations of a compact set.

However, we remark here that when Condition 3.1.14.i) holds, the same arguments

carry through without essential change. In [20] extra conditions are assumed to

guarantee that the process does not escape to infinity with significant probability;

for our model, since the state space is compact, this is automatic. The quasipotential

is defined by

V (x, y) = inf {It (γ) : γ ∈ D ([0, t] : S) , γ (0) = x, γ (t) = y, t <∞} , for x, y ∈ S.

(3.1.14)

We need the quasipotential to be continuous within its domain. This property follows

from the fact that for any x, y ∈ S that are sufficiently close, one can construct a

path connects x to y with arbitrary small cost (Lemma 3.7.1).

Lemma 3.1.16. Assume Condition 3.1.14.i) holds, then V (·, ·) is jointly continuous

in S × S.

The proof of Lemma 3.1.16 is deferred to Section 3.7. We now state the LDP for

invariant measures in the case of a single equilibrium.

Theorem 3.1.17. Assume that x0 is the unique stable equilibrium of the LLN dy-

namics (2.3.2), and is globally attracting (in S). Also assume Condition 3.1.14.i)

holds. Then for any n > 0, there exists a unique invariant measure νn of the Markov

process with generator (2.2.5). Moreover, {νn}n∈N
satisfies an LDP with rate func-

tion V (x0, ·).

When the LLN limit (2.3.2) has multiple stable equilibria, following the same
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approach as the case of non-degenerate diffusions (see [20], Chapter 6.4), a general-

ization of the above theorem also holds.

3.1.4 Corollaries for the mean field interacting particle sys-

tems

We now describe how the results in Sections 3.1.1 and 3.1.2 apply to the particular

setting of the mean field interacting particle systems introduced in Chapter 2.

Notice that in the statements of Theorems 3.1.10 and 3.1.15, one can rewrite

the local rate function (3.1.3) as a function of the jump rates {αk
ij} (see (2.3.3))

of the particle systems. For this, we need to introduce a natural ordering for

pairs (i, j) ∈ ∪k≤KJ k, by first ordering them by increasing k, and then ordering

((i1, .., ik) , (j1, ..., jk)) lexicographically. Denote by CK the cardinality of ∪k≤KJ k.

This ordering establishes a bijection between natural numbers {1, ..., CK} and or-

dered pairs (i, j) ∈ ∪k≤KJ k. With this, we sometimes abuse the notation and refer

to r ∈ N instead of r = ej − ei =
∑k

l=1 eil −
∑k

l=1 ejl
.

Let W be a d×CK matrix with each column specified as the corresponding jump

direction: Wr = ej − ei if r ∈ N maps to ej − ei. For x ∈ S and β ∈ ∆d−1, (3.1.3)

can be written as

L (x, β) = inf
q:Wq=β

K
∑

k=1

∑

(i,j)∈J k

αk
ij (x) `

(

qk
ij

αk
ij (x)

)

,

where q = diag
(

q1, ..., qK
)

is a block matrix such that each qk is a dk × dk matrix

with nonnegative entries for (i, j) ∈ J k, and zero for (i, j) ∈ X 2k\J k. In the special
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case that K = 1, L can be written as

L (x, β) = inf
q:1T q=β

d
∑

i=1

d
∑

j=1,j 6=i

α1
ij (x) `

(

qij

α1
ij (x)

)

,

and the constraint Wq = β reduces to

∑

i6=j

qij −
∑

k 6=j

qjk = βj, j = 1, ..., d,

where we represent q1 simply by q.

Conditions 2.3.1, 3.1.1 and 3.1.7 are properties of {λv (x)}, and therefore can be

directly verified from (2.3.6). Conditions 3.1.4 and 3.1.14 hold for many classes of

interacting particle systems with simultaneous jumps. Here, we state three easily

verifiable sufficient conditions in terms of the Γ matrices of the original particle

systems. For k ≤ K and (i, j) ∈ J k, denote

M
k
ij

.
= inf

x∈S
Γk

ij (x) , (3.1.15)

and let

N k=̇
{

(i, j) ∈ J k : M
k
ij > 0

}

.

The first condition states that an entry of the rate matrices in a given jump direction

is either identically zero, or uniformly bounded below away from zero (note that the

jump rate αij in that direction is not bounded away from zero).

Condition 3.1.18. For k = 1, ..., K and (i, j) ∈ J k, either (i, j) ∈ N k, or Γk
ij (x) = 0

for every x ∈ S.

Condition 3.1.19. For every x ∈ S, the Markov process on X with rate matrix

Γ1 (x) is ergodic.
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Condition 3.1.20. For every x ∈ S, the Markov process on X with rate matrix

Γeff (x) is ergodic, where Γeff is defined as in (2.3.5).

In Section 3.2, we establish the following result.

Proposition 3.1.21. The following two assertions hold:

i). Conditions 3.1.18 and 3.1.20 imply Condition 3.1.4.

ii). Condition 3.1.19 and the continuity of Γ1 (·) implies Condition 3.1.14 (and

hence, also Condition 3.1.4).

In particular, both the LDP and the locally uniform LDP hold for the interacting

particle systems described in Examples 2.4.1, 2.4.2 and 2.4.3.

For the n−particle systems we study, it is more natural to start with random

initial conditions. Depending on the large deviation rate of the initial condition, this

gives rise to an additional cost in the rate function. The LDP for empirical measure

processes with random initial conditions are stated in the following corollary.

Corollary 3.1.22. Assume Conditions 2.3.1, 3.1.1, 3.1.3, 3.1.18 and 3.1.20 hold.

Also, assume that the empirical measure processes {µn}n∈N
are Markovian, with

generator (2.2.3) and initial conditions {µn (0)}n∈N
that converges to µ0, in such

a way that they satisfy an LDP with rate function J0 (·). Then the corresponding

sequence of empirical measure processes {µn}n∈N
satisfies the sample path LDP with

rate function J0 (γ (0)) + I (γ).

Proof. For any y ∈ Sn, denote Un (y) = − 1
n

log Eye
−nh(µn). By Theorem 3.1.10 and

the equivalence between the LDP and the Laplace principle [40], for any sequence of
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{yn}n∈N
that converges to some y ∈ S,

Un (yn) → U (y) = inf {I (γ) + h (γ) : γ ∈ D ([0, 1] : S) , γ (0) = y} .

By Lemma 3.1.23 below, U is continuous on S. A standard argument by contradic-

tion then shows that Un converges to U uniformly. Let νn denote the law of µn (0).

Then

lim
n→∞

−1

n
log Eµn(0)e

−nh(µn) = lim
n→∞

−1

n
log

∑

yn∈Sn

e−nUn(yn)νn {yn}

= lim
n→∞

−1

n
log

∫

e−n(U (y)+o(1))νn (dy)

= inf
y∈S

{U (y) + J0 (y)}

= inf
γ∈D([0,1]:S)

{h (γ) + J0 (γ (0)) + I (γ)} ,

where the third equality follows from the assumption and the continuity of U . The

conclusion follows by the equivalence between the LDP and the Laplace principle.

Lemma 3.1.23. U (y) = inf {I (γ) + h (γ) : γ ∈ D ([0, 1] : S) , γ (0) = y} is continu-

ous.

Proof. Fix ε > 0. Given δ > 0 such that c (δ) ≤ ε/3, and any yδ ∈ S such that
∥

∥yδ − y
∥

∥ ≤ δ, by Lemma 3.7.1, there exists a path ν ∈ AC ([0, δ] : S) with ν (0) = y,

ν (δ) = yδ such that Iδ (ν) ≤ c (δ). And, by the construction in the proof of Lemma

3.7.1, sups∈[0,δ] ‖ν (s) − y‖ ≤ Cδ for some C < ∞. We now rescale γ to obtain a

new path γδ: for c = (1 − δ)−1, define γδ ∈ AC ([0, 1 − δ] : S) by γδ (s) = γ (cs). By

Proposition 3.5.8, we can take δ smaller if necessary such that I1−δ

(

γδ
)

≤ I (γ)+ε/3.

Let γ̄ be the concatenation of ν and γδ, ‖γ − γ̄‖∞ → 0 as δ → 0. Therefore

U
(

yδ
)

≤ h(γ̄) + I (γ̄) ≤ I (γ) + ε/3 + c (δ) + h (γ̄) − h (γ) ,
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which goes to zero by sending δ → 0 and then sending ε → 0. The other inequality

is proved in the same way.

Example 3.1.24. Assume that in the n−particle system, particles are initially dis-

tributed as i.i.d X−valued random variables, with common distribution ν. Then by

Sanov’s theorem, J0 (µ0) = R (µ0 ‖ν ) =
∑d

i=1 µ0,i log
µ0,i

νi
.

The analogous result holds for the locally uniform refinement of the LDP.

We note that these are only sufficient conditions, and the LDP can be shown

to hold for other interacting particle systems, by directly verifying the conditions of

Theorem 3.1.10 (especially, Condition 3.1.4), as illustrated by the following example.

Example 3.1.25. Let d = 4, K = 2, and define the generator of the Markov process

{µn} as in (2.2.3) with αk,n
ij defined as in (2.2.4), in terms of Γ1,n and Γ2,n given by

Γ1,n
12 (x) = c1, Γ1,n

21 (x) = c2, Γ1,n
34 (x) = c3,

Γ1,n
43 (x) = c4, Γ2,n

(1,2),(3,4) (x) = c5, Γ2,n
(3,4),(1,2) (x) = c6

for ci > 0, i = 1, ..., 6, for all x ∈ S, and identically zero otherwise. The effective

jump rate matrix Γeff then takes the form

Γeff
12 (x) = c1, Γeff

21 (x) = c2, Γeff
34 (x) = c3, Γeff

43 (x) = c4

Γeff
13 (x) = x2c5, Γeff

31 (x) = x4c6, Γeff
24 (x) = x1c5, Γeff

42 (x) = x3c6.

Γeff is not ergodic on the part of the boundary given by

{x ∈ S : x3 = x4 = 0 or x1 = x2 = 0}. However, one can easily verify Condition

3.1.4, as well as Conditions 2.3.1, 3.1.1 and 3.1.7.

Given a mean field interacting particle system with simultaneous jumps, one can

construct another single jump particle system, according to the effective jump rate
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matrix
{

Γn,eff
}

defined as in (2.3.4). As mentioned in Chapter 2, these systems have

the same LLN limit. However, the following example shows that the prelimit models,

in particular their large deviation behavior, can have a significantly different nature.

Example 3.1.26. Let X = {1, 2, 3, 4, 5, 6}, K = 2, and for any n ∈ N consider a

Markov process with the following properties: states are grouped into blocks {1, 2},

{3, 4}, {5, 6}, such that within each block, states communicate through single jumps,

and there exist simultaneous jumps of two particles between different blocks. Also,

the number of particles in the first block can only change by an even number during

each jump. In particular, consider the Markov process associated with the generator

(2.2.3), with αk,n
ij defined as in (2.2.4), in terms of Γ1,n and Γ2,n given by

Γ1,n
12 (x) = 1,Γ1,n

21 (x) = 1,Γ1,n
34 (x) = 1,Γ1,n

43 (x) = 1,Γ1,n
56 (x) = 1,Γ1,n

65 (x) = 1,

Γ2,n
(1,2),(3,4) (x) = 1, Γ2,n

(3,4),(1,2) (x) = 1, Γ2,n
(2,3),(4,1) (x) = 1, Γ2,n

(4,1),(2,3) (x) = 1,

Γ2,n
(1,3),(4,2) (x) = 1, Γ2,n

(1,3),(5,2) (x) = 1, Γ2,n
(1,4),(5,2) (x) = 1, Γ2,n

(1,6),(5,2) (x) = 1,

Γ2,n
(2,4),(1,5) (x) = 1, Γ2,n

(2,5),(1,4) (x) = 1, Γ2,n
(1,5),(6,2) (x) = 1, Γ2,n

(3,5),(6,1) (x) = 1,

Γ2,n
(4,6),(1,2) (x) = 1, Γ2,n

(1,2),(5,6) (x) = 1, Γ2,n
(5,6),(1,2) (x) = 1, Γ2,n

(5,6),(3,4) (x) = 1.

for all x ∈ S, and identically zero otherwise. One computes the effective jump rate
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matrix to be

Γeff
12 (x) = 1, Γeff

21 (x) = 1 + x4 + x5, Γeff
34 (x) = 1,

Γeff
43 (x) = 1, Γeff

56 (x) = 1, Γeff
65 (x) = 1,

Γeff
13 (x) = x2 + x4, Γeff

24 (x) = x1 + x3, Γeff
31 (x) = x2 + x4,

Γeff
42 (x) = 2x1 + x3, Γeff

14 (x) = x3, Γeff
32 (x) = 2x1,

Γeff
15 (x) = x2 + x3 + x4 + x6, Γeff

62 (x) = x1 + x4 + x5, Γeff
45 (x) = x2,

Γeff
54 (x) = x2, Γeff

16 (x) = x5, Γeff
52 (x) = x1,

Γeff
36 (x) = x5, Γeff

51 (x) = x3 + x6, Γeff
41 (x) = x6,

Γeff
53 (x) = x6, Γeff

64 (x) = x5, Γeff
26 (x) = x1.

Conditions 2.3.1, 3.1.1, 3.1.3 and 3.1.18 can be checked explicitly from (2.3.3) and

(2.3.6). Also, Condition 3.1.20 follows from the fact that Γeff (x) is affine in x, and
{

Γeff (ei)
}

is ergodic for i ∈ {1, ..., 6}. Thus, the associated single jump particle

system satisfies an LDP and a locally uniform LDP by Theorem 3.1.10 and 3.1.15.

In particular, for any x, y ∈ S, if we take xn, yn ∈ Sn such that ‖xn − x‖ → 0,

‖yn − y‖ → 0, Theorem 3.1.15 implies

Pxn (µn (t) = yn) = exp (−nJt (x, y) + o (n)) , as n→ ∞,

where Jt (·) is defined as in (3.1.9) and is finite because of the communication prop-

erty. However, the original simultaneous jump particle system fails to satisfy the

locally uniform LDP. Indeed, for any n ∈ N, the number of particles in states {1, 2}

remains either odd or even. Therefore if we take xn, yn ∈ Sn that additionally satisfy

{xn
1 + xn

2}n∈N
is even and {yn

1 + yn
2}n∈N

is odd, then Pxn (µn (t) = yn) = 0 for any

n ∈ N.
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3.2 Verification of Conditions

In this section we verify that the assumptions of Theorems 3.1.10 and 3.1.15 are

satisfied by a large class of mean field interacting particle systems. Readers only

interested in the large deviation proof can skip this section.

Recall the definition of M
k
ij in (3.1.15), and let

c0 = min
{

M
k
ij : M

k
ij > 0, k = 1, ..., K, (i, j) ∈ J k

}

> 0.

3.2.1 Proof of Proposition 3.1.21.i)

To prove Condition 3.1.4 under Conditions 3.1.18 and 3.1.20, we will actually prove

a stronger result. Namely, we show that Condition 3.1.4 holds under a much weaker

communication condition for the Markov processes on X , introduced below as Defi-

nition 3.2.1.

Definition 3.2.1. For two states u, v ∈ X , v is said to be K−accessible from u, if

there exist L ∈ {1, ..., d} and a sequence of distinct states in X : u = u1, u2, ..., uL = v,

such that for m = 1, ..., L− 1,

i). there exist km ∈ {1, ..., K}, (im, jm) ∈ J km , and lm, l
′

m ∈ {1, ..., km}, such that

um = im,lm and um+1 = jm,l′m
,

ii). for l = 1, ..., km, im,l ∈ {u1, ..., um},

iii). M
km

imjm
> 0.
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If for any u, v ∈ X , v is K−accessible from u, we call the Markov process asso-

ciated with {Γij (·)}(i,j)∈∪k≤KJ k K−ergodic.

Notice that when K = 1, the notion of 1−ergodicity coincides with the ergod-

icity of single jump rate matrix Γ1. Roughly speaking, the general K−accessibility

condition ensures that one can reach state v from u, by going through certain types

of simultaneous jumps, such that for each m, one can move mass exclusively from a

subset of states {u1, ..., um} to um+1 (this is ensured by the second condition of Defi-

nition 3.2.1). Up to our knowledge, all the interesting examples satisfy the conditions

of Definition 3.2.1. And, the second condition allows one to construct communication

paths, by moving along the direction of such sequences of simultaneous jumps.

To illustrate the notion of K−ergodicity, note that the interacting particle system

with simultaneous jumps described in Examples 3.1.25 and 3.1.26 are 2−ergodic. Let

us verify 2−ergodicity for Example 3.1.25. Take any i, j ∈ {1, 2, 3, 4}, and assume

without loss of generality i = 1, by the symmetry of the dynamics. If j = 2, we can

take L = 2, k1 = 1 and (i1, j1) = (1, 2). If j = 3, take L = 3, u1 = 1, u2 = 2, u3 = 3,

k1 = 1, (i1, j1) = (1, 2), k2 = 2 and (i2, j2) = ((1, 2) , (3, 4)). The j = 4 case is similar

to j = 3, except that u3 = 4. It is easy to check the sequence of states {um} and

jumps satisfy conditions i), ii), iii) of Definition 3.2.1.

Remark 3.2.2. We show that Conditions 3.1.18 and 3.1.20 imply K−ergodicity of

{Γij (x)}(i,j)∈∪k≤KJ k , for any x ∈ S. Take any u, v ∈ X , u 6= v. Since Γeff (eu) is

ergodic by Condition 3.1.20, there exists a sequence of distinct states u = u1, ..., uL =

v such that Γeff
umum+1

(eu) > 0, m = 1, ..., L − 1. By the definition of Γeff given in

(2.3.5), this implies that for m = 1, ..., L− 1, there exist km ∈ {1, ..., K}, (im, jm) ∈
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J km , and lm ∈ {1, ..., km}, such that um = im,lm, um+1 = jm,lm and

km
∏

r=1
r 6=lm

〈

eu, eim,r

〉

Γkm

imjm
(eu) > 0.

This implies that M
km

imjm
> 0, and im,r = u for every r 6= lm. In other words,

the lthm component of im is equal to um, and all other components are equal to u.

Definition 3.2.1.i) is satisfied with lm = l
′

m, and Definition 3.2.1.ii) is satisfied with

im,l ∈ {u, um} for l = 1, ..., km. Finally, since Γkm

imjm
(eu) > 0, Condition 3.1.18

implies that M
km

imjm
> 0, property iii) of Definition 3.2.1 is also satisfied.

To prove Condition 3.1.4, one needs to show some local controllability property

of the underlying Markov process. More precisely, it suffices to show that there exist

constants c > 0 and c′, p < ∞ such that for every x ∈ S and y ∈ int(S), there

exists a communicating path φ from x to y (with respect to the constants c, p and

c′), as stated in Definition 3.1.4. We show that K−ergodicity provides sufficient

controllability. First, it allows one to move from any point on the boundary to some

compact convex subset of int(S) that contains y, using a sequence of jumps whose

rates are uniformly bounded below away from zero (Lemma 3.2.3). Then, we show

that in the compact subset, the controllability is stronger: one can in fact move

toward any coordinate direction (Lemma 3.2.4), and thus, the construction of such

a path in this compact subset is straightforward (Lemma 3.2.6).

For a > 0 define S̃a=̇ {x ∈ S : xi ≥ a, i = 1, ..., d}.

Lemma 3.2.3. Assume that for any i, j ∈ X , j is K−accessible from i. Then for any

x ∈ S and a ∈ [0, 1/ (K + 1)d−1 d], there exist z ∈ S̃a, t0 > 0 and a communicating

path φ ∈ C ([0, t0] : S) that connects x to z. Moreover,
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i). there is C < ∞ such that for any x ∈ S, φ can be chosen such that
∫ t0

0
‖φ̇ (s) ‖ds ≤ Cdist(x, S̃a),

ii). for any s ∈ [0, t0] and i ∈ X such that φ̇i (s) < 0, φi (s) ≥ a.

Before proving the lemma in general let us first illustrate with Example 3.1.25

where d = 4 and K = 2. Assume without loss of generality x1 ≥ x2 ≥ x3 ≥ x4, and

therefore x1 ≥ 1/4. As before, we take (i1, j1) = (1, 2), and (i2, j2) = ((1, 2) , (3, 4)).

For a ≤ 1/108, we discuss the construction of such a path in three cases that exhaust

all possibilities.

Case I. x3 ≥ a > x4. Take φ (0) = x, φ̇ (t) = (ej1 − ei1) 1[0,2(a−x4)) (t)

+(ej2 − ei2) 1[2(a−x4),3(a−x4)) (t). It is easy to verify property i) in the lemma. To verify

property ii), note that for t ∈ [0, 3 (a− x4)], φ1 (t) ≥ φ1 (0)−2 (a− x4)− (a− x4) ≥

x1 − 3a ≥ a, φ2 (t) ≥ φ2 (0) ≥ a, φ̇3 (t) ≥ 0, φ̇4 (t) ≥ 0. Since φ4 (3 (a− x4)) = a, we

have φ (3 (a− x4)) ∈ S̃a.

Case II. x2 ≥ a > x3. Take φ(1) (0) = x, φ̇(1) (t) = (ej1 − ei1) 1[0,2(a−x3)) (t) +

(ej2 − ei2) 1[2(a−x3),3(a−x3)) (t). One can verify property i) and ii) in the lemma are

satisfied for φ(1) by the same argument applied to φ. If z(1) = φ̇(1) (3 (a− x3)), then

we have z
(1)
1 ≥ a, z

(1)
2 ≥ a, z

(1)
3 ≥ a. Then it is reduced to Case I, and we can further

take a communicating path that moves z(1) into S̃a, and concatenates with φ(1) to

obtain the desired path.

Case III. x1 > a > x2. Take φ(2) (0) = x, φ̇(2) (t) = (ej1 − ei1) 1[0,a−x2) (t). One

can verify property i) and ii) in the lemma are satisfied for φ(2). And at t = a− x2,

x1 ≥ a = x2 ≥ x3 ≥ x4, and it reduces to Case II.
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The construction of a communication path can be generalized into the following

proof.

Proof. If a = 0 or x ∈ S̃a, we can choose z = x and there is nothing to prove.

Therefore we assume a > 0 and x /∈ S̃a. Assume without loss of generality that

x1 ≥ x2 ≥ · · · ≥ xd, and for some 2 ≤ k ≤ d, xk−1 ≥ a > xk. When K = 1, a more

straightforward proof (which gives stronger result) is given in Lemma 3.2.7 below.

For general K, we will prove the lemma by induction on w
.
= d − k, one less than

the number of indicies smaller than a.

If w = 0, then xd is the only component such that xd < a. By the definition

of K−accessibility there exist L ∈ {1, ..., d} and a sequence of distinct states 1 =

u1, u2, ..., uL = d, such that for m = 1, ..., L−1, there exist km ∈ {1, ..., K}, (im, jm) ∈

J km , and lm, l
′

m ∈ {1, ..., km}, such that um = im,lm, um+1 = jm,l
′
m
, and M

km

imjm
> 0.

Now let

cm,L
.
=











(K + 1)
L−2 − (K + 1)

L−1−m
if m ∈ {1, ..., L− 1} ,

(K + 1)L−2 if m = L.

Then consider the piecewise linear path φ with φ (0) = x, and

φ̇ (t) =
L−1
∑

m=1

(ejm − eim) 1[cm,L(a−xd),cm+1,L(a−xd)) (t) , a.e. t ≥ 0. (3.2.1)

Let t0 = (K + 1)
L−2

(a− xd). We claim that for l = 2, ..., d − 1, and t∗ ∈ [0, t0]

such that φ̇l (t
∗) < 0, φl (s) ≥ a for s ∈ [t∗, t0]. Indeed, for such l, there exist

m ∈ {1, ..., L− 1} and r ∈ {1, ..., km} such that l = im,r. If there exist multiple

(m, r) that satisfy l = im,r, we take the pair with smallest m. Then by Definition

3.2.1.ii), l ∈ {u1, ..., um−1}, thus there exist m′ ∈ {1, ..., m− 1} and r′ ∈ {1, ..., km′}
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such that l = jm′,r′. Therefore, for any s ∈ [t∗, t0] ,

φl (s) = φl (0) +

∫ s

0

φ̇l (t) dt

≥ a+
〈

ejm′ , el

〉

(cm′+1,L − cm′,L) (a− xd)

−
L−1
∑

p=m

〈

eip,el

〉

(cp+1,L − cp,L) (a− xd)

≥ a,

where the last inequality follows from the fact that
〈

eip,el

〉

≤ K, and

cm′+1,L − cm′,L ≥ cm,L − cm−1,L ≥ K
L−1
∑

p=m

(cp+1,L − cp,L) .

Also, as will explained below, for s ∈ [0, t0],

φ1 (s) = φ1 (0) +

∫ s

0

φ̇1 (t) dt

≥ 1

d
−

L−1
∑

p=1

〈

eip,e1

〉

(cp+1,L − cp,L) (a− xd)

≥ 1

d
−KcL,L

1

(K + 1)
d−1

d

≥ 1

d
− 1

(K + 1) d

> a.

Here the first inequality follows since
∑d

i=1 xi = 1 and x1 ≥ · · · ≥ xd implies x1 ≥

1/d. The second inequality follows from
〈

eip,e1

〉

≤ K and a − xd ≤ a ≤ 1

(K+1)d−1d
.

The third inequality follows since cL,L = (K + 1)
L−2 ≤ (K + 1)

d−2
, and the fourth

since K/K + 1 ≥ 1/(K + 1)d−1.
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Finally, by Definition 3.2.1.ii), φ̇d (s) ≥ 0, and since
〈

ejL−1
− eiL−1

, ed

〉

≥ 1,

φd (t0) = xd +

∫ t0

0

φ̇d (t) dt

≥ xd +

∫ cL,L(a−xd)

cL−1,L(a−xd)

φ̇d (t) dt

≥ xd +
〈

ejL−1
− eiL−1

, ed

〉

(cL,L − cL−1,L) (a− xd)

≥ xd + a− xd = a.

Therefore φ (t0) ∈ S̃a, and property ii) of Lemma 3.2.3 is satisfied. Also, φ is a

communicating path, since by (2.3.3) and (2.3.6),

λvm (φ (s)) ≥ αkm

imjm
(φ (s))

=
1

(km)!

km
∏

r=1

φim,r (s) Γkm

imjm
(φ (s))

≥ 1

K!
adc0.

Property i) is satisfied since
∫ t0

0
‖φ̇ (s) ‖ds ≤

√
2Kt0 ≤ C2 (d,K) (a− xd)

≤ C2 (d,K)dist(x, S̃a) for some C2 <∞.

Suppose the conclusion of the lemma holds for w ≤ h, and now let w = h + 1

(and k = d − h − 1). The idea is first move along a communicating path that

uses the same jump directions as (3.2.1), until reaching some z(1), such that for

some s ∈ {k, ..., d}, z(1)
s ≥ a, and then use the induction assumption. To con-

struct such a path φ(1), take the same sequence of jumps {(im, jm)} as in the case

of w = 0. Let m0 be the smallest index such that one of the states with value

below a can be increased: m0 = min{m : ∃l s.t. ∃s ∈ {k, ..., d} , s = jm,l}. Let

55



42

∆ = min {a− xs : s ∈ {k, ..., d} , s.t. ∃l, s = jm0,l}. We then define

cm,m0 =











(K + 1)
m0−2 − (K + 1)

m0−1−m
m ∈ {1, ..., m0 − 1} ,

(K + 1)m0−2 m = m0,

and let φ(1) be the path given by φ(1) (0) = x,

φ̇(1) (t) =

m0−1
∑

m=1

(ejm − eim) 1[cm,m0 ∆,cm+1,m0 ∆) (t) , a.e. t ≥ 0.

Also, let z(1) = φ(1) (cm0,m0∆). Then by the same argument applied to the path φ, φ(1)

is a communicating path, and for t∗ ∈ [0, cm0,m0∆] and l ∈ X such that φ̇
(1)
l (t∗) <

0, it follows that φ
(1)
l (s) ≥ a for s ∈ [t∗, cm0,m0∆]. Also,

∫ cm0,m0∆

0
‖φ̇(1) (s) ‖ds ≤

√
2Kcm0,m0∆ ≤ C2 (d,K)dist(x, S̃a). Therefore, for l ∈ {1, ..., k− 1}, z(1)

l ≥ a, and

there exists s ∈ {k, ..., d}, such that z
(1)
s ≥ a. Thus at most h components of z(1) are

less than a. By the induction assumption there exists z ∈ S̃a, and a communicating

path φ(2) that connects z(1) to z, and satisfies properties i) and ii). The conclusion

then follows by concatenating φ(1) and φ(2), and noticing that

dist
(

z(1), S̃a
)

≤ ‖x− z(1)‖ + dist
(

x, S̃a
)

≤
∫ cm0,m0∆

0

‖φ̇(1) (s) ‖ds + dist
(

x, S̃a
)

≤ (C2 (d,K) + 1) dist
(

x, S̃a
)

.

Lemma 3.2.4. Assume that for any i, j ∈ X , j is K−accessible from i. Then for

any u, v ∈ X , u 6= v, there exist a finite constant F = Fu,v, km ∈ {1, ..., K} for
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m = 1, ..., F , am ≥ 0 and (im, jm) ∈ J km such that M
km

imjm
> 0, such that

ev − eu =
F
∑

m=1

am (ejm − eim) . (3.2.2)

We first illustrate with Example 3.1.25. Without loss of generality, we set v = 4

and u = 1. As before, we take (i1, j1) = (1, 2), and (i2, j2) = ((1, 2) , (3, 4)). Thus

(ej1 − ei1) + (ej2 − ei2) = e3 + e4 − 2e1.

To cancel the term e3, we further take (i3, j3) = (3, 4). Then
∑3

m=1 (ejm − eim) =

2 (e4 − e1), or e4 − e1 =
∑3

m=1
1
2
(ejm − eim).

Proof of Lemma 3.2.4. Fix u, v ∈ X , u 6= v. When K = 1, we can take a sequence

of states u = u1, ..., uL = v, such that M
1
umum+1

> 0. Then we can simply take

ev − eu =
∑L−1

m=1

(

eum+1 − eum

)

.

For general K, it is more subtle to choose all the coefficients {am}. By Definition

3.2.1, there exist a sequence of distinct states u = u1, ..., uL = v, and km ∈ {1, ..., K},

(im, jm) ∈ J km for m = 1, ..., L− 1, that satisfies the properties in Definition 3.2.1.

We claim that there exist nonnegative {a(u)
m }L−1

m=1, such that

L−1
∑

m=1

a(u)
m (ejm − eim) =

∑

i6=u

c
(u)
i ei − eu (3.2.3)

with c
(u)
i ≥ 0,

∑

i6=u c
(u)
i = 1, c

(u)
v > 0.

To prove this claim, we first let κ(m) =
〈

eum+1 , ejm
〉

/km for m = 1, ..., L−1. Since

by Definition 3.2.1 um+1 ∈ jm, κ(m) ∈ [1/K, 1]. Let {b(u)
m }L−1

m=1 be the solution to the
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following system of linear equations:



































b
(u)
L−1 = 1

κ(L−2)b
(u)
L−2 = Kb

(u)
L−1

...

κ(1)b
(u)
1 = K

(

b
(u)
L−1 + b

(u)
L−2 + ...+ b

(u)
2

)

.

(3.2.4)

The interpretation of these equations is as follows. Recall that by Definition 3.2.1.ii),

for each m = 1, ..., L, each component of im belongs to {u1, ..., um}. Hence for

m0 = 2, ..., L − 1,
〈

eum0
, eim

〉

can be positive only when m ∈ {m0, ..., L− 1}. In

the following display, the first equality follows from the last sentence, the second

equality from the definition of κ(m0−1), and the inequality from
〈

eim, eum0

〉

≤ K and

the equations (3.2.4):

〈

b
(u)
m0−1ejm0−1 −

L−1
∑

m=1

b(u)
m eim, eum0

〉

=

〈

b
(u)
m0−1ejm0−1 −

L−1
∑

m=m0

b(u)
m eim, eum0

〉

= κ(m0−1)km0−1b
(u)
m0−1 −

L−1
∑

m=m0

b(u)
m

〈

eim, eum0

〉

≥ 0. (3.2.5)

Equality holds in (3.2.5) only if km0−1 = 1 and if for all m ∈ {m0, ..., L− 1},
〈

eim, eum0

〉

= K. Since equality for a particularm0 ∈ {2, ..., L− 1} implies km0−1 = 1

and therefore
〈

eim0−1, eum0−1

〉

< K, there must be some index for which the strict

inequality holds. It follows from (3.2.5) that

〈

L−1
∑

m=1

b(u)
m (ejm − eim) , ei

〉

≥
〈

b
(u)
m0−1ejm0−1 −

L−1
∑

m=1

b(u)
m eim, ei

〉

≥ 0, for i ∈ {um}L−1
m=2 .

Also, for i /∈ {um}L−1
m=1, by Definition 3.2.1.ii), 〈ei, eim〉 = 0 for any m = 1, ..., L. This
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implies

〈

L−1
∑

m=1

b(u)
m (ejm − eim) , ei

〉

=

〈

L−1
∑

m=1

b(u)
m ejm, ei

〉

≥ 0, for i /∈ {um}L−1
m=1 .

The equality in the following display is because 〈ejm − eim, (1, . . . , 1)〉 = 0, and the

inequality follows by combining the last two displays and using that the first will be

strict for at least one index:

〈

L−1
∑

m=1

b(u)
m (ejm − eim) , eu

〉

= −
∑

w 6=u

〈

L−1
∑

m=1

b(u)
m (ejm − eim) , ew

〉

< 0.

The last three displays imply there are d
(u)
i ≥ 0, i 6= u and d∗ > 0 such that

L−1
∑

m=1

b(u)
m (ejm − eim) =

∑

i6=u

d
(u)
i ei − d∗eu.

To obtain (3.2.3) and in particular the coefficients {a(u)
m }L−1

m=1 and {c(u)
i }d

i=1,i6=u, we

divide the last display by d∗. Then clearly c
(u)
i ≥ 0 for i 6= u, and again using

〈ejm − eim, (1, . . . , 1)〉 = 0 gives
∑

i6=u c
(u)
i = 1. To see that c

(u)
v > 0, we use the last

display and that v /∈ im for any m, v ∈ jL−1, and that b
(u)
m > 0 for all m.

To obtain (3.2.2) we will eliminate the terms involving ei, i 6= u, v, on the right

hand side of (3.2.3). We have assumed for each s 6= u, v, that v is K−accessible

from s. Hence applying the same argument as above with u replaced by s, we obtain

some Ls < ∞, a sequence of jumps {(i(s)m , j(s)m )}Ls−1
m=1 and coefficient {a(s)

m }Ls−1
m=1 , such

that
Ls−1
∑

m=1

a(s)
m

(

e
j
(s)
m

− e
i
(s)
m

)

=
∑

i6=s

c
(s)
i ei − es, (3.2.6)

where c
(s)
i ≥ 0,

∑

i6=s c
(s)
i = 1, c

(s)
v > 0, and a

(s)
m ≥ 0.

59



46

It suffices to find nonnegative {θi}d
i=1,i6=v such that

θ1

(

∑

i6=1

c
(1)
i ei − e1

)

+ · · · + θd

(

∑

i6=d

c
(d)
i ei − ed

)

= ev − eu, (3.2.7)

since then we coul substitute (3.2.6) into (3.2.7) to obtain (3.2.2). Notice that (3.2.7)

can also be written componentwiseas































































θ1 = c
(2)
1 θ2 + · · · + c

(d)
1 θd

θ2 = c
(1)
2 θ1 + · · · + c

(d)
2 θd

...

θu = 1 + c
(1)
u θ1 + · · · + c

(d)
u θd

...

θd = c
(1)
d θ1 + · · · + c

(d−1)
d θd−1.

Applying Lemma 3.2.5 below with

C =



















0 c
(2)
1 ... c

(d)
1

c
(1)
2

. . .
...

...
. . . c

(d)
d−1

c
(1)
d ... c

(d−1)
d 0



















and b = eu, it follows that this system of linear equations has a unique nonnegative

solution.

Lemma 3.2.5. Suppose that A = Id − C, where Id is the d × d identity matrix and

C = (cij)
d
i,j=1 for some d ∈ N, such that cii = 0, cij ≥ 0 and

∑d
j=1 cij < 1. Also, let

b ∈ [0,∞)d. Then the system of linear equations Ax = b has a unique nonnegative

solution {xi}d
i=1.

Proof. The spectral radius of C is less than 1 since its matrix norm is less than 1.
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Therefore detA > 0, and A−1 exists. The fact that A−1 is a positive matrix follows

from a general result in inverse positivity [2, Theorem 6.3.8]. The nonnegativity of

x then follows from the nonnegativity of b.

Lemma 3.2.6. Assume the conclusion of Lemma 3.2.4 holds. Then for any a > 0

and x, y ∈ Sa, there exists a communicating path in Sa/2 that connects x to y, with

the number of linear segments possibly depending on a.

Proof. To start we use the fact that there is a piecewise linear path φ0 from x to y

that lies in Sa and only uses velocities in the directions {ej − ei : i, j ∈ X}, and for

which the total length scales with the distance between x and y. Suppose φ0 is such

a path, with φ0 (0) = x, and for some L < d, there are 0 = t0 < t1 < · · · < tL and

{um}L
m=1 , {vm}L

m=1 ∈ X so that

φ̇0 (t) =
L
∑

m=1

(evm − eum) 1[tm−1,tm) (t) , a.e. t ∈ [0, tL].

As noted previously, we can assume there is C1 <∞ independent of x and y such that
∫ tL

0
‖φ̇0 (s) ‖ds ≤ C1 ‖x− y‖. By Lemma 3.2.4, there exist Fm < ∞, {(i(m)

k , j
(m)
k )}

and {a(m)
k } such that evm − eum =

∑Fm

k=1 a
(m)
k (e

j
(m)
k

− e
i
(m)
k

). Let F = maxm Fm,

C =
√

2KF maxm,k a
(m)
k , and set ε = a/2C . We now further divide each segment

[tm−1, tm) into finitely many segments, each of which has length no more than ε, and

within each segment, replace φ0 by a finitely segmented communicating path. In

particular, if [ri, rf) ⊂ [tm−1, tm) is such a segment, then we would use the path

φ (s) = φ0 (ri) +

∫ s

ri

Fm
∑

k=1

a
(m)
k Fm

(

e
j
(m)
k

− e
i
(m)
k

)

1[ri+
k−1
Fm

(rf−ri),ri+
k

Fm
(rf−ri)) (s) ds.

Note that φ (rf) = φ0 (ri), and that rf − ri ≤ ε for all such segments implies φ ∈

AC
(

[0, tL] : Sa/2
)

. Also, by (2.3.3) and (2.3.6) we have λv (φ (s)) ≥ 1
K!

(

a
2

)d
c0 for all
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s ∈ [0, tL], and

∫ tL

0

‖φ̇ (s) ‖ds ≤ CF 2

∫ tL

0

‖φ̇0 (s) ‖ds ≤ CF 2C1 ‖x− y‖ .

Thus φ is the desired communicating path that connects x to y.

Now we complete the proof of Proposition 3.1.21.i).

Proof. By Remark 3.2.2, under Conditions 3.1.18 and 3.1.20 j is K−accessible from

i for any i, j ∈ X . Therefore for any x ∈ S, y ∈ int(S), a communicating path

connecting x to y can be found by setting a = min
{

y1, ..., yd,
1

(K+1)d−1d

}

, and con-

catenating the paths constructed in Lemma 3.2.3 and 3.2.4. Notice that along the

path φ, λv (φ (s)) ≥ 1
K!

(

a
2

)d
c0 ≥ c1 (mini yi)

d, where c1 = 1
K!
c0(2 (K + 1)d−1 d)−d.

Therefore Condition 3.1.4 holds.

3.2.2 Proof of Proposition 3.1.21.ii)

To verify Condition 3.1.14, for any x, y ∈ S, we need to construct a strongly commu-

nicating path that connects x to y. In particular, we need to consider the case when

y ∈ ∂S. Thus, the approach in the previous subsection (in particular, Lemma 3.2.6)

cannot be directly applied. We will show that 1−ergodicity implies a very strong

controllability, so that one can always construct a communicating path between x

and y by matching up their coordinates. We first show that Condition 3.1.14 holds

under both Conditions 3.1.18 and 3.1.19, and then show that 3.1.18 can be dropped

if Γ1 is continuous.

Lemma 3.2.7. Assume Conditions 3.1.18 and 3.1.19 hold. Then for any x, y ∈
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S, there exist t0 > 0 and a strongly communicating path φ ∈ AC ([0, t0] : S) that

connects x to y. Moreover, we can rescale φ such that φ (0) = x, φ (1) = y, and

‖φ̇ (·) ‖ is constant and bounded by C ‖x− y‖ for some C <∞.

Proof. We will prove the result by a recursive construction. We claim that for any

r ∈ {2, ..., d}, after possibly relabeling indicies, there exist 0 ≤ tr−1 < ∞, some

z(r) ∈ S such that z
(r)
i = yi for i ∈ {1, ..., r− 1}, and a strongly communicating

path φ(r) ∈ AC ([0, tr−1] : S), such that φ(r) (0) = x, φ(r) (tr−1) = z(r). Furthermore,
∫ tr−1

0
‖φ̇(r) (s) ‖ds ≤ Cr (d,K) ‖x− y‖ for some Cr < ∞. The conclusion follows by

taking r = d.

The claim will be proved by induction. The case r = 2 is trivial: we choose

i1 ∈ X so that xi1 ≥ yi1, and then reverse the roles of the indicies 1 and i1. Take

t1 = x1 − y1 and any state i2 ∈ X\{1} such that M
1
1i2

> 0 (the existence of i2 is

implied by Conditions 3.1.18 and 3.1.19), and switch the indicies 2 and i2. Define

φ(2) (t) = x+ (e2 − e1) t, t ∈ [0, t1] .

Then clearly, φ(2) (0) = x, z(2) = φ(2) (t1) ∈ S, z
(2)
1 = y1 and

∫ t1
0

‖φ̇(2) (s) ‖ds =
√

2t1 ≤
√

2 ‖x− y‖. Thus, φ(2) is a path of the desired form. Also, the lower bound

(3.1.13) holds with N1 = {1}, p1 = 1, and for some c1 > 0 since by (2.3.3) and

(2.3.6),

λv1 (x) =

K
∑

k=1

∑

(i,j)∈J k:
ej−ei=v1

αk
ij (x) ≥ x1Γ

1
12 (x) ≥ c0x1

since Γ1
12(x) is uniformly positive.

Now, assume the claim holds for r = m, and let z(m) and φ(m) be the corre-

sponding quantities in the claim. We now prove the claim for r = m + 1. By
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assumption, we have φ(m) (tm−1) = z(m). Since
∑d

i=m z
(m)
i =

∑d
i=m yi, by possibly

indicies within the set {m, ..., d}, we may assume without loss of generality that

z
(m)
m ≥ ym. If z

(m)
m = ym then the claim also holds for r = m + 1. If z

(m)
m > ym,

we will move some mass from state m to some state in {m+ 1, ..., d}, while not

changing the mass in states with lower index, by considering an additional tra-

jectory ψ ∈ AC ([0, q] : S) for some q < ∞, such that ψi (q) = ψi (0) for every

i = 1, ..., m − 1 and ψm (q) − ψm (0) = −(z
(m)
m − ym). To do this, take any v ∈

{m + 1, ..., d}. By Conditions 3.1.18 and 3.1.19, there exist L ≤ m and a sequence

of states m = u0, ..., uL = v, such that for 1 ≤ l ≤ L − 1, M
1
ulul+1

> 0. We take

im = ulmin, where lmin
.
= min {l : ul ∈ {m+ 1, ..., d}}. Thus ulmin is the first in-

dex outside {1, ..., m}, and lmin is the number of steps it took to get there. Define

q = lmin(z
(m)
m − ym), and

ψ (t) = z(m) +

∫ t

0

lmin
∑

l=1

(

eul
− eul−1

)

1
[(l−1)(z

(m)
m −ym),l(z

(m)
m −ym))

(s) ds. (3.2.8)

Since lmin ≤ d, we have

∫ tp

0

‖φ̇p (s) ‖ds ≤
√

2d
∣

∣z(m)
m − ym

∣

∣

≤
√

2d
(

|xm − ym| +
∣

∣z(m)
m − xm

∣

∣

)

≤
√

2d

(

‖x− y‖ +

∫ tm−1

0

‖φ̇(m) (s) ‖ds
)

≤
√

2d (1 + Cm (d,K)) ‖x− y‖ ,

where the last inequality follows from the induction assumption for r = m.

Now define tm+1 = tm + q, and φ(m+1) ∈ C ([0, tm+1] : S) to be the concatenation

of φ(m) and ψ. As we show below, φ(m+1) is a path of the desired form. For v ∈ V1,

v = ej − ei for some i, j ∈ X , i 6= j, as before we have λv (x) ≥ xiΓ
1
ij (x) ≥ c0xi, and
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therefore for s ∈ [0, tm+1], λv(φ
(m+1) (s)) ≥ c0φ

(m+1)
i (s). Finally we note that

∫ tm

0

‖φ̇(m+1) (s) ‖ds ≤
∫ tm−1

0

‖φ̇(m) (s) ‖ds+

∫ tp

0

‖ψ̇ (t) ‖dt

≤
(√

2d +
(√

2d + 1
)

Cm (d,K)
)

‖x− y‖ .

The claim now follows by induction. The last sentence in the statement of the lemma

follows from Remark 3.1.6, thus completing the proof.

The construction of a discrete strongly communicating path follows directly from

discretization of a strongly communicating path.

Lemma 3.2.8. Suppose Conditions 3.1.18 and 3.1.19 hold. Then for any n ∈ N,

x, y ∈ Sn, there exists a discrete strongly communicating path that connects x to y.

Proof. Fix n ∈ N and x, y ∈ Sn. Let y−x = 1
n

(a1, .., ad) with ai ∈ N, |ai| ≤ n ‖x− y‖

and
∑d

i=1 ai = 0. By Lemma 3.2.7 there exists a communicating path φ(c) with

φ(c) (0) = x, φ(c) (1) = y, and U < ∞ such that ‖φ̇(c) (s) ‖ .
= U ≤ C (d,K) ‖x− y‖

for almost every s ∈ [0, 1]. Since φ(c) only moves in the directions {ej − ei : i, j ∈ X},

the choice of the times q used in the recursive construction of φ(c) in (3.2.8) and the

fact that both x and y lie in the grid Sn imply that the value φ(c) at the times when

φ̇(c) changes (denoted {z(r)} in the previous lemma) are also in Sn. It suffices to

take k = nU , and the discrete path {φs}k
s=1 to be φs = φ(c) (s/nU), that is, to be

the lattice point passed by φ(c). Then φ is a path of the desired form and φ satisfies

(3.1.13) since φ(c) satisfies (3.1.10).

We now relax the assumptions made in the last two lemmas, and show that they

continue to hold under Condition 3.1.19 and continuity of the jump rates. The basic
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idea of the proof is to partition S into finite collection of sets of essentially the same

geometric form as the simplex, such that within each sets Condition 3.1.18 holds.

Therefore, by Lemma 3.2.7 and 3.2.8, one can construct a strongly communicating

path (and its discrete analogue) that connects any two points within each small

simplex. The desired strongly communicating path (and its discrete analogue) in

S can be obtained by concatenating the paths within some collection of the smalll

simplices.

Lemma 3.2.9. Assume Condition 3.1.19 is satisfied, and that Γ1 (·) is continuous.

Then the conclusions of Lemma 3.2.7 and 3.2.8 hold.

Proof. Recall that V1=̇ {ej − ei, (i, j) ∈ J 1}. For any x ∈ S, let V(x) = {ej − ei ∈

V1 : Γ1
ij (x) > 0} and cx = minv∈V(x) Γ

1
ij (x). By the continuity of {Γ1

ij (·)}, there exists

an open simplex Sx that contains x, and such that infy∈Sx minej−ei∈V(x) Γ
1
ij (y) ≥ cx/2.

{Sx}x∈S thus forms an open cover of S, and we can take a finite subcover {Sxk
}K

k=1 .

Let c0 = min{cx1/2, ..., cxK
/2}. For any x ∈ S let K(x)

.
= {k : x ∈ Sxk

}, and define

Γ̄1
ij (x) =











Γ1
ij (x) ej − ei ∈ ∪k∈K(x)V(xk)

0 ej − ei ∈ V\ ∪k∈K(x) V(xk).

Then for any i = 1, ..., K, x ∈ Sxi
, the Markov process on X with rate matrices

{Γ̄1
ij (x)} is ergodic. This implies that {Γ̄1

ij (x)} satisfies Conditions 3.1.18 and 3.1.19

within Sxk
, with infy∈Sxk

minej−ei∈Vxk
Γ̄1

ij (y) ≥ c0. Therefore, by applying the same

argument as in Lemma 3.2.7, it follows that for any u, v ∈ S̄xi
, there exists a strongly

communicating path that connects u to v.

Now for any u, v ∈ S, suppose the line {tu+ (1 − t) v : t ∈ [0, 1]} intersects

∪K
k=1∂Sxi

at {ui}L
i=1, for some L <∞. Then each line segment

{tui + (1 − t)ui+1 : t ∈ [0, 1]} is contained in some S̄xj
, and therefore one can take a
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strongly communicating path φi that connects ui to ui+1. Let φ be the concatena-

tion of {φi}L
i=0. Then φ is strongly communicating because each φi is. Indeed, the

fact that each φi satisfies Condition 3.1.4.i).ii). and Definition 3.1.12.iv).v) directly

implies φ does. Also, denote u0 = u, uL+1 = v, we have

Len (φ) ≤
L
∑

i=0

Len (φi) ≤ C

L
∑

i=0

‖ui+1 − ui‖ = C ‖u− v‖ ,

for some C < ∞, where we used the fact that each φi satisfies Condition 3.1.4.iii).

Therefore φ satisfies Condition 3.1.4.iii).

The construction of a discrete strongly communicating path follows by exactly

the same argument as Lemma 3.2.8.

3.2.3 Proof of Lemma 3.1.9

As before, we first illustrate the conclusion with Example 3.1.25 where d = 4 and

K = 2. Let x = µ (0), and assume without loss of generality x1 ≥ x2 ≥ x3 ≥ x4, and

therefore x1 ≥ 1/4. The ODE (2.3.2) implies

µ̇1 =
∑

v∈V
〈v, e1〉 λv (µ (t)) ≥ −µ1 − µ1µ2 ≥ −2µ1,

thus µ1 (t) ≥ x1e
−2t ≥ c0, c0 = e−2/4. Then

µ̇2 =
∑

v∈V
〈v, e2〉 λv (µ (t)) ≥ µ1 − µ2 − µ1µ2 ≥ c0 − 2µ2,
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which one solves µ2 (t) ≥ c1t for some c1 > 0. Also, for i = 3, 4,

µ̇i =
∑

v∈V
〈v, ei〉λv (µ (t)) ≥ µ1µ2 − µi − µ3µ4 ≥ c0c1t− 2µi,

thus µi (t) ≥ c2t
2. The proof for the general case is more technical and is given

below.

Proof. Define b1 = max {|〈ej, v〉| : j ∈ X , v ∈ V} < ∞, and let M1 = b1M |V|. The

ODE (2.3.2) implies that for i = 1, ..., d,

µ̇i (t) =
∑

v∈V
〈v, ei〉 λv (µ (t)) ≥ −M1, t ∈ [0, 1] . (3.2.9)

Therefore

µi (t) ≥ µi (0) e
−M1t, t ∈ [0, 1] . (3.2.10)

Let X1 =
{

i ∈ X : µi (0) >
1
2d

}

. Then for any b < 1
2d
e−M1, (3.2.10) implies that

µi (t) > b, t ∈ [0, 1] holds for all i ∈ X1, thus Condition 3.1.3 is satisfied.

To show the inequality in Condition 3.1.3 also holds for i ∈ X\X1 (for a suitable

choice of b), the idea is that in (3.2.9), for those v such that 〈v, ei〉 < 0, λv (x)

converges to zero as xi → 0 (by Condition 3.1.7), and therefore the communication

condition would push µ (·) into the interior of S. Define y =̇
(

1
d
, ..., 1

d

)

, and note that

by Condition 3.1.4 and Remark 3.1.6, there exist c1 > 0, and a communicating path

φ ∈ AC ([0, 1] : S) with φ (0) = µ (0), φ (1) = y. Given the representation of φ in

terms of F < ∞, {tm}F
m=1 , {vm}F

m=1 and {Um}F
m=1 given in (3.1.2), property ii) of

Condition 3.1.4 implies for m = 1, ..., F ,

λvm (φ (s)) ≥ c1, s ∈ [tm−1, tm] . (3.2.11)
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For m = 1, ..., F , denote x(m) = φ (tm). Then in particular, we have λvm+1

(

x(m)
)

≥

c1. Using Condition 3.1.1, there exist C2, C3 > 0 such that the following lower bound

holds for any z ∈ S:

λvm+1 (z)

λvm+1 (x(m))
≥ C2

d
∏

j=1

zj

x
(m)
j

exp
(

−f0

(∥

∥x(m) − z
∥

∥

))

≥ C3

d
∏

j=1

zj

x
(m)
j

, (3.2.12)

where the last inequality follows from the fact that f0 (·) is continuous (and thus

bounded from above) on [0, 1].

Now, define Pk = {j ∈ X : µj (0) < x
(k)
j }, and fix i ∈ X\X1. Clearly, i ∈ PF

since x
(F )
i = yi = 1/d. We claim that for every k = 1, ..., F , there exists b(k) > 0

such that for any j ∈ Pk, µj (t) ≥ b(k)tD(k), where D (k) =
∑k−1

i=0 d
i. Since i ∈ PF ,

the lemma follows from setting k = F and b = b(F ) in the claim.

To prove the claim, we first note that by (3.2.10), for any m = 1, ..., F and

j /∈ Pm, µj (t) ≥ e−M1µj (0) ≥ e−M1x
(m)
j . For t > 0, applying (3.2.12) to obtain

λvm+1 (µ (t))

λvm+1 (x(m))
≥ C3e

−M1|Pc
m|
∏

j∈Pm

µj (t)

x
(m)
j

≥ C3e
−M1d

∏

j∈Pm

µj (t) . (3.2.13)

Notice that if for some j ∈ Pm, x
(m)
j = 0, the second inequality in (3.2.13) also holds

trivially.

We now prove the claim by induction. Define

b2 = min {〈v, ej〉 : j ∈ X , v ∈ V , s.t. 〈v, ej〉 > 0}. For k = 1, take any j ∈ P1. Since

µj (0) < x
(1)
j , we have 〈v1, ej〉 > 0. By (2.3.2), (3.2.11) and Condition 3.1.7,

µ̇j (t) ≥ 〈v1, ej〉λv1 (µ (t)) +
∑

v∈V
〈v,ej 〉<0

〈v, ej〉λv (µ (t))

≥ b2c1 −M2µj (t)
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for M2 = b1C |V|, where C is the constant in Condition 3.1.7. Applying the compar-

ison principle for ODEs, we see that for t ∈ [0, 1], µj (t) ≥ b2c1
M2

(

1 − e−M2t
)

≥ b(1)t

for some b(1) > 0.

Assume the claim holds for k ≤ m, and let k = m+1. For l ∈ Pm+1, since µl (0) <

x
(m+1)
l = φl (tm+1), and φ has representation (3.1.2), there exists m∗ ∈ {1, ..., m+ 1},

such that 〈vm∗ , el〉 > 0, and therefore 〈vm∗ , el〉 ≥ b2. If m∗ = 1, the result follows

by applying the same argument in the k = 1 case. Note that by (3.2.13) and the

induction hypothesis for k = m, there exist C4 > 0 such that when m∗ ≥ 2, for

t ∈ [0, 1],

λvm∗ (µ (t))

λvm∗ (x(m∗−1))
≥ C3e

−M1d
∏

j∈Pm∗−1

µj (t) ≥ C3e
−M1d

(

b(m
∗−1)t

Pm∗−2
i=0 di

)d

≥ C4t
Pm∗−1

i=1 di

.

Thus, combined with (2.3.2), (3.2.11) and Condition 3.1.7, there exist C5 > 0 such

that

µ̇l (t) ≥ 〈vm∗ , el〉λvm∗ (µ (t)) +
∑

v∈V
〈v,el〉<0

〈v, el〉λv (µ (t))

≥ C5t
Pm∗−1

i=1 di −M2µl (t) .

≥ C5t
Pm

i=1 di −M2µl (t) .

Solving the ODE u̇ (t) = C5t
Pm

i=1 di −M2u (t), and applying the comparison principle,
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it follows that for t ∈ [0, 1],

µl (t) ≥ C5

M
Pm

i=0 di

2

e−M2t (−1)
Pm

i=0 di

∫ 0

−M2t

s
Pm

i=1 di

e−sds

≥ C5

M
Pm

i=0 di

2

e−M2t (−1)
Pm

i=0 di

∫ 0

−M2t

s
Pm

i=1 di

ds

≥ b(m+1)t
Pm

i=0 di

for some b(m+1) > 0. This proves the claim, and hence the lemma.

3.3 The Variational Representation Formula

3.3.1 Variational Representation for a Poisson Random Mea-

sure

We briefly review the variational representation formula for a Poisson random mea-

sure stated in [6]. For any Polish space S let Mσ (S) denote the space of σ−finite

measures on S. We equip Mσ (S) with the weakest topology such that for every

f ∈ Cc (S), the function ν 7→
∫

S
fdν, ν ∈ Mσ (S) , is continuous. Let Y = [0,∞),

YT = [0, T ] × Y, both equipped with the usual Euclidean topology, and let M =

Mσ(YT ). For some fixed measure ν ∈Mσ (Y), let νT = mT ⊗ν, wheremT is Lebesgue

measure on [0, T ]. For θ ∈ [0,∞), let Pθ denote the unique probability measure on

(M,B (M)) under which the canonical map N : M → M, N (ω) = ω, is a Poisson

random measure with intensity measure θνT . Let Eθ denote expectation with respect

to Pθ. For notational convenience, we omit the dependence of Pθ and Eθ on the fixed

measure νT .
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Now, define a controlled Poisson random measure as follows. Let W = Y ×

[0,∞) and WT = [0, T ] × W = YT × [0,∞), also equipped with the Euclidean

product topology. Let M̄ = Mσ(WT ) and let P̄ be the unique probability measure

on
(

M̄,B
(

M̄
))

under which the canonical map N̄ : M̄ → M̄, N̄ (ω) = ω, is a

Poisson random measure with intensity measure νT = νT ⊗m, where m is Lebesgue

measure on [0,∞). Let Ē denote expectation with respect to P̄. Also, define

Gt = σ
{

N̄ ((0, s] × A) : 0 ≤ s ≤ t, A ∈ B (W)
}

,

and let Ft denote its completion under P̄. Denote by P̄ the predictable σ-field on

[0, T ] × M̄ with the filtration {Ft}0≤t≤T on
(

M̄,B
(

M̄
))

.

Definition 3.3.1. Let Ā be the class of
(

P̄ ⊗ B (Y)
)

\B[0,∞) predictable maps ϕ :

[0, T ] × M̄× Y → [0,∞).

The role of ϕ is to control the intensity of jumps at (s, ω, x) by thinning in the r

variable. For ϕ ∈ Ā, define Nϕ : M̄ → M by

Nϕ
ω ((0, t] × U) =

∫

(0,t]×U

∫ ∞

0

1[0,ϕ(s,ω,x)] (r) N̄ω (dsdxdr) , (3.3.1)

for t ∈ [0, T ] , U ∈ B (Y) , ω ∈ M̄. We will suppress the dependence of ϕ (t, ω, x), N̄ω

and Nϕ
ω on ω at later times. Then under P̄, Nϕ is a controlled random measure on

YT with ϕ (s, x) determining the intensity for points at location x and time s. With

some abuse of notation, for θ ∈ [0,∞) we will let N θ be defined as in (3.3.1) with

ϕ (s, x) ≡ θ. Note that the law (on M̄) of N θ under P̄ coincides with the law of N

under Pθ.
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Recall ` (·) as defined in (3.1.4). For ϕ ∈ Ā define the random variable LT (ϕ) by

LT (ϕ) (ω) =

∫

YT

` (ϕ (t, ω, x)) νT (dtdx)

=

∫ T

0

(∫

[0,∞)

` (ϕ (t, ω, x)) ν (dx)

)

dt, ω ∈ M̄. (3.3.2)

Definition 3.3.2. Define Āb to be the class of
(

P̄ ⊗ B (Y)
)

\B[0,∞) predictable

maps ϕ such that for some B <∞, ϕ (t, ω, x) ≤ B for all (t, ω, x) ∈ [0, T ]×M̄ × Y.

In later sections we will set T = 1, and hence the dependence of Ā and Āb

on T can be omitted. Let Mb (M) denote the space of bounded Borel measurable

functions on M. We then have the following representation formula for Poisson

random measures.

Theorem 3.3.3. Let F ∈Mb (M). Then for any θ > 0,

− log Eθ [exp (−F (N))] = inf
ϕ∈Āb

Ē
[

θLT (ϕ) + F (N θϕ)
]

. (3.3.3)

Proof. For F ∈Mb (M) and θ > 0, it follows from Theorem 2.1 of [6] that

− log Eθ [exp (−F (N))] = − log Ē
[

exp
(

−F (N θ)
)]

= inf
ϕ∈Ā

Ē
[

θLT (ϕ) + F (N θϕ)
]

.

Moreover, Theorem 2.4 of [5] states that the above infimization can in fact be taken

over the smaller class of controls, such that ϕ (t, ω, x) is bounded by B < ∞ for all

(t, ω) ∈ [0, T ]×M̄ and for all x within some compact set, and ϕ (t, ω, x) is identical

to 1 for x outside the set. Since Āb ⊂ Ā contains this class of controls, we obtain

(3.3.3).
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3.3.2 Variational representation for the empirical measure

process

In this section we derive a variational representation formula for the empirical mea-

sure process µn. We represent µn as a solution to a stochastic differential equation

that is driven by finitely many i.i.d Poisson random measures, and using thinning

functions to obtain the desired jump rates. We then derive a variational representa-

tion formula for µn, by viewing it as the image of a measurable mapping that acts

on the collection of rescaled Poisson random measures.

Take ν = m, so that νT = mT ⊗m. For n ∈ N, let {Nn
v , v ∈ V} be a collection of

i.i.d Poisson random measures (on YT ) with intensity measure nνT . Thus we have

the following SDE representation for the empirical measure process: for t ∈ [0, T ],

µn(t) = µn(0) +
∑

v∈V
v

∫

[0,t)

∫

Y
1[0,λn

v (µn(s))](x)
1

n
Nn

v (dsdx). (3.3.4)

The existence of a solution to (3.3.4) is explained in the following argument.

From Condition 2.3.1 and (2.3.1), we can set

M
′

= sup
v∈V ,x∈Sn,n∈N

λn
v (x) <∞. (3.3.5)

Let Matom denote the set of all m = {mv, v ∈ V}, where for each v ∈ V , mv is an

atomic measure on YT , with the property that mv({t}× [0,M
′
]) > 0 for only finitely

many t. Define h : Matom ×S ×
(

[0,∞)Sn
)⊗|V| → D ([0, 1] : S) as the mapping that
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takes (m, ρ, λn) ∈ Matom × S ×
(

[0,∞)Sn
)⊗|V|

to the process y defined by

y (t) = ρ+
∑

v∈V
v

∫

[0,t)

∫

Y
1[0,λn

v (y(s))](x)mv(dsdx). (3.3.6)

The existence of a solution y(·) to (3.3.6) is easily verified by the following re-

cursive construction. Set t0 = 0, and define y0 (t) = ρ for t ≥ 0. Assume as part

of the recursive construction that for some k ∈ N0, a solution yk (·) to (3.3.6) has

been constructed on the interval [0, tk], and that yk (t) = yk (tk) for t ≥ tk. For any

t ∈ [tk, T ] and v ∈ V , let

Av (t) =
{

(s, x) : s ∈ [tk, t], x ∈
[

0, λn
v

(

yk(s)
)]}

,

and

tk+1 = inf {t > tk such that for some v ∈ V ,mv (Av (t)) > 0} ∧ T.

We then define yk+1 : [0, T ] → R
d by setting yk+1 (t) = yk (t) for t ∈ [0, tk+1),

yk+1 (tk+1) = yk (tk) +
∑

v∈V
v

∫

[tk,tk+1]

∫

Y
1[0,λn

v(yk(s))](x)mv(dsdx),

and setting yk+1 (t) = yk+1 (tk+1) for t ∈ [tk+1, T ].

Since mv has finitely many atoms on [0, T ]×[0,M
′
], the construction will produce

a function defined on all of [0, T ] in L <∞ steps, at which time we set y (t) = yL (t).

Since N ∈ Matom for Pn−a.e. ω, we can write

µn (t, ω) = h

(

1

n
Nn, µn(0, ω), λn

)

(t) (3.3.7)

for Pn−a.e. ω ∈ M.
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We now describe two classes of controls that will be used below. Recall that

νT = νT ⊗m. Let
{

N̄n
v , v ∈ V

}

be a collection of i.i.d Poisson random measures on

WT with intensity measure nνT . Let

Gn
t = σ

{

N̄n ((0, s] × A) : 0 ≤ s ≤ t, A ∈ B (Y)
}

and let Fn
t denote its completion under P̄. Denote by P̄n the predictable σ-field

on [0, T ] × M̄ with the filtration {Fn
t : 0 ≤ t ≤ T} on

(

M̄,B
(

M̄
))

. For n ∈ N, we

denote Ā⊗n
b and Ā⊗n as the n−fold Cartesian product of Āb and Ā. Given ϕ ∈ Ā⊗|V|

b

we define the controlled jump Markov process µ̂n ∈ D ([0, T ] : S) to be the solution

to the following SDE: for t ∈ [0, T ],

µ̂n (t) = µn(0) +
∑

v∈V
v

∫

[0,t)

∫

Y
1[0,λn

v (µ̂n(s))](x)

∫

[0,∞)

1[0,ϕv(s,x)](r)
1

n
N̄n

v (dsdxdr).

(3.3.8)

As described previously, ϕv(s, x) will control the jump rate as a function of (s, ω, x).

In particular, the overall jump rate is the product λn
v (µ̂n(s))ϕv(s, x), so that ϕv(s, x)

perturbs the jump rate away from that of the original model. For v ∈ V , let Nnϕ
v

be defined as in (3.3.1), with ϕ replaced by ϕv and N̄ replaced by N̄n
v , and let

Nnϕ = {Nnϕ
v , v ∈ V}. For fixed ϕ ∈ Ā⊗|V|

b , Nnϕ ∈ Matom a.s. From the definition of

h(·), it is clear that (3.3.8) is equivalent to the relation

µ̂n = h

(

1

n
Nnϕ, µn(0), λn

)

.

Applying Theorem 3.3.3 and (3.3.7) we obtain the following representation for-

mula for µn.
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Lemma 3.3.4. For F ∈Mb (S),

−1

n
log E [exp(−nF (µn))]

= inf
ϕ∈Ā⊗|V|

b

Ē

[

∑

v∈V
LT (ϕv) + F (µ̂n) : µ̂n = h

(

1

n
Nnϕ, µn(0), λn

)

]

.

Proof. Consider the space Ỹ = Y × V and define a collection of Poisson random

measures {Ñn} on Ỹ with intensity measure nνT ⊗ |·|, where |·| is the counting

measure on V . Then the SDE representation (3.3.4) is equivalent to

µn(t) = µn(0) +

∫

[0,t)

∫

Ỹ
v1[0,λn

v(µn(s))](x)
1

n
Ñn(dsdxdv), t ∈ [0, T ] .

Therefore for any F ∈ Mb (S), applying Theorem 3.3.3 with Y replaced by Ỹ , ν

replaced by nνT ⊗ |·|, F (·) replaced by nF ◦ h
(

1
n
·, µn(0), λn

)

yields

−1

n
log E [exp(−nF (µn))] = −1

n
log E

[

exp

(

−nF ◦ h
(

1

n
Nn, µn(0), λn

))]

= inf
ϕ∈Ā⊗|V|

b

Ē

[

∑

v∈V
LT (ϕv) + F ◦ h

(

1

n
Nnϕ, µn(0), λn

)

]

.

We now derive a simpler form of the variational representation formula than the

one given in Lemma 3.3.4. The starting point for Lemma 3.3.4 is the representation

given in [6], which is general enough to cover situations where the different points

in Y correspond to different “types” of jumps. For our purposes this is in fact more

general than we need, since all points in Y correspond to exactly the same type of

jump, and all that is needed from the space Y is that it be big enough that arbitrary

jump rates [such as λn
v (µ̂n(s))] can be obtained by thinning. Because all the x’s

play an identical role, one expects, and we will verify using Jensen’s inequality, that

77



64

one can restrict to controls with no x-dependence. Thus we will replace the time,

state and v dependent controls Ā⊗|V|
b by controls A⊗|V|

b that only have time and v

dependence, and rewrite the running cost as a function of the new controlled jump

rates.

Definition 3.3.5. Define Ab to be the class of P̄\B[0,∞) finite measurable maps

ϕ : [0, T ] ×M̄ → [0,∞).

Define Λn : A⊗|V|
b × S → D ([0, 1] : S) by

Λn (ᾱ, ρ) (t) = ρ+
∑

v∈V
v

∫

[0,t)

∫

Y
1[0,ᾱv(s)](x)

1

n
Nn

v (dsdx). (3.3.9)

Λn (·, ρ) is well-defined for ᾱ ∈ A⊗|V|
b .

We are now in a position to state the main variational representation formula,

the proof of which is deferred to Appendix B. The representation is the right one for

finite state Markov chains, and expresses the variational integrand as the sum of a

cost for perturbing jump rates, plus the expected value of the test function evaluated

at the process which uses these perturbed rates.

Theorem 3.3.6. Let F ∈Mb (S). Then

− 1

n
log E [exp(−nF (µn))]

= inf
ᾱ∈A⊗|V|

b

Ē

[

∑

v∈V

∫ 1

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt+ F (µ̄n) : µ̄n = Λn (ᾱ, µn (0))

]

.
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3.3.3 The Law of Large Numbers limit

We prove the law of large numbers limit (Theorem 2.3.2) at the end of this section.

First recall the law of large numbers result for scaled Poisson random measures: for

any A ∈ B ([0, 1] × [0,∞)) such that m1 ⊗m (A) < ∞, 1
n
Nn

v (A) → m1 ⊗m (A) in

probability, for any v ∈ V . This implies that for any f ∈ Cc ([0, 1] × [0,∞)) we have
∫ 1

0

∫∞
0
f (s, x) 1

n
Nn

v (dsdx) →
∫ 1

0

∫∞
0
f (s, x) dsdx. Rewrite (3.3.4) as

µn(t) = ρ0 +
∑

v∈V
v

∫

[0,t)

λn
v (µn(s)) ds+Mn(t),

where Mn(t) =
∑

v∈V
∫ t

0

∫∞
0

1[0,λn
v (µn(s))](x)(

1
n
Nn

v (dsdx) − dsdx). Recall that λn
v con-

verges uniformly to λv (by Condition 2.3.1). Therefore if for any ε > 0,

P(supt∈[0,T ] ‖Mn(t)‖ > ε) → 0, then µn → µ in probability (uniformly on t ∈ [0, T ]),

for some µ which satisfies

µ(t) = ρ0 +
∑

v∈V
v

∫

[0,t)

λv (µ(s)) ds,

which is the integral version of (2.3.2). The uniqueness of the solution µ (·) to the

above equation follows from the Lipschitz continuity of λv (·).

Since {Mn(t), t ≥ 0} is an {Fn
t }−martingale, for any ε > 0 Doob’s inequality

gives
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P

(

sup
t∈[0,T ]

‖Mn(t)‖ > ε

)

≤ 1

ε2
E ‖Mn(T )‖2

=
1

ε2
E

∥

∥

∥

∥

∥

∑

v∈V

∫ T

0

∫ ∞

0

1[0,λn
v (µn(s))](x)

1

n
(Nn

v (dsdx) − ndsdx)

∥

∥

∥

∥

∥

2

≤ |V|
nε2

E

∫ 1

0

∫ M

0

dsdx

→ 0

as n→ ∞, where M is defined as in (2.3.1). This completes the proof.

3.4 Proof of the LDP Upper Bound

A large deviation upper bound for a general class of Markov processes was obtained

in [13]. We briefly describe the results in [13] below, specialized to the current setting.

For every n ∈ N, recall the Markov process µn on Sn with infinitesimal generator Ln

given by (2.2.5). Theorem 1.1 of [13] applies to a slightly different class of Markov

processes, with infinitesimal generator described by

L0
n (f) (x) = n

∑

v∈V
λv (x)

[

f

(

x+
1

n
v

)

− f (x)

]

, (3.4.1)

where λv takes values in (2.3.6).

The difference between (2.2.5) and (3.4.1) is the n−dependence of jump rates.

However, since λn
v convergences uniformly to λv, Theorem 3.4.1 below implies that

these processes have the same LDP rate function. The proof follows by a standard
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coupling argument, and will be deferred to Appendix C.

We assume Condition 2.3.1 for the results in this section. In what follows we

denote ‖x− y‖∞ = supt∈[0,1] ‖x (t)− y (t)‖ for x, y ∈ D ([0, 1] : S). Recall that two

squences of Markov processes {Xn}n∈N
, {Y n}n∈N

⊂ D ([0, 1] : S) are called exponen-

tially equivalent, if for each ε > 0,

lim sup
n→∞

1

n
log P (‖Xn − Y n‖∞ > ε) = −∞.

Exponential equivalence implies that {Xn}n∈N
satisfies the LDP with a given

rate function if and only if {Y n}n∈N
satisfies the LDP with the same rate function

(Theorem 1.3.3 of [12]).

Theorem 3.4.1. Assume the family of jump rates {λv (x) , x ∈ S, v ∈ V} satisfies

Conditions 2.3.1. Let {Xn}n∈N
, {Y n}n∈N

be a squence of Markov processes with

generator Ln and L0
n respectively, and with Xn (0) = Y n (0). Then {Xn} and {Y n}

are exponentially equivalent.

For x, α ∈ R
d, define

H (x, α) =
∑

v∈V
λv (x) (exp 〈α, v〉 − 1) .

Note that H is continuous. Let L0 be its Legendre-Fenchel transform defined by

L0 (x, β) = sup
α∈Rd

[〈α, β〉 −H (x, α)] . (3.4.2)

Also, for t ∈ [0, 1] define I0
t as in (3.1.5), but with L replaced by L0.
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Proposition 3.4.2. For any compact set K ⊂ S and M <∞, the set

{

γ : I0 (γ) ≤M, γ (0) ∈ K
}

is compact. Assume the family of jump rates {λv (x) , x ∈ S, v ∈ V} satisfies Condi-

tions 2.3.1. Also, assume that the initial conditions {µn (0)}n∈N
are deterministic,

and µn (0) → µ0 ∈ P (X ) as n tends to infinity. Let {Y n}n∈N
be a sequence of

Markov processes with generator L0
n, and Y n (0) = µn (0). Then {Y n} satisfies the

large deviation upper bound with rate function I0.

Proof. This follows from Theorem 1.1 of [13] with ε = 1/n, a (·) = b (·) = 0, and

µx (·) = 1x∈S
∑

v∈V λv (x) δv (·).

We have introduced functions L0 [in (3.4.2)] and L [in (3.1.3)], defined respec-

tively in terms of a Legendre transform and relative entropy. The next proposition

shows they are two representations of the same local rate function.

Proposition 3.4.3. L (x, β) = L0 (x, β) for all x ∈ S, β ∈ ∆d−1.

Proof. Defining hv,a : R
d → R by hv,a (α) = a (exp (〈α, v〉) − 1) for v ∈ R

d and a ∈

[0,∞), we can write H (x, α) =
∑

v∈V hv,λv(x) (α). The Legendre-Fenchel transform

of hv,a can be computed explicitly as

h∗v,a (β) =











a` (y) if β = avy,

∞ otherwise.

Since H is a finite sum of convex functions, we can apply a standard result in convex

analysis to calculate its Legendre-Fenchel transform (see, e.g., Theorem D.4.2 of
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[12]):
(

∑

v∈V
hv,λv(x)

)∗

(β) = inf

{

∑

v∈V
h∗v,λv(x) (βv) :

∑

v∈V
βv = β

}

.

Hence,

L0 (x, β) = inf
q:

P

v∈V vqv=β

∑

v∈V
λv (x) `

(

qv

λv (x)

)

= L (x, β) .

Combining Theorem 3.4.1, Proposition 3.4.2 and Proposition 3.4.3, we conclude

that that I (γ) satisfies (3.1.7), and has compact level sets for compact sets of initial

conditions.

3.5 Properties of the Local Rate Function

In this section we establish useful properties of the function

L (x, β) = inf
q:

P

v∈V vqv=β

∑

v∈V
λv (x) `

(

qv

λv (x)

)

, x ∈ S, β ∈ ∆d−1, (3.5.1)

which is defined in (3.1.3) as a proposed local rate function for {µn}n∈N
. In what

follows we denote the relative interior of S by int(S). Also, for a > 0, define

Sa .
= {p ∈ S : dist (p, ∂S) ≥ a}

=

{

p ∈ S : inf
x∈∂S

‖p− x‖ ≥ a

}

. (3.5.2)

Note that for x ∈ Sa, xi ≥ a/
√
d for i = 1, ..., d.

Throughout this section, we assume Conditions 2.3.1, 3.1.1 and 3.1.4 hold for

83



70

{λv (·)}v∈V . Given a set of vectors {uj}F
j=1 ⊂ R

d, the positive cone spanned by

{uj}F
j=1 is defined by

C {uj} =̇

{

v ∈ R
d : there exist aj ≥ 0 with v =

F
∑

j=1

ajuj

}

. (3.5.3)

Also, define Vx = {v ∈ V : λv (x) > 0},

V+ = {v ∈ V : for any a > 0, infx∈Sa λv (x) > 0}. Under Condition 3.1.1, for x ∈

int(S), Vx = V+. The following observation follows from the definition of a commu-

nicating path.

Proposition 3.5.1. For x ∈ int(S), C {v : v ∈ Vx} = C {v : v ∈ V+} = ∆d−1.

It is also convenient to introduce another function L̄ : [0,∞)|V|×∆d−1 → R which,

for any vectors u ∈ [0,∞)|V| and β ∈ ∆d−1, is defined by

L̄ (u, β) = inf
q:

P

v∈V vqv=β

∑

v∈V
uv`

(

qv

uv

)

. (3.5.4)

Lemma 3.5.2. L̄ is jointly strictly convex in u ∈ [0,∞)|V| and β ∈ ∆d−1. The

function L defined in (3.5.1) is nonnegative and uniformly continuous on compact

subsets of int(S) × ∆d−1, and for each x ∈ S, L (x, ·) is a strictly convex on ∆d−1.

Proof. The joint convexity of the function

(u, q) ∈ [0,∞)|V|×[0,∞)|V| 7→∑

v∈V uv` (qv/uv) is immediate. The joint convexity of

L̄ then follows since it is the infimum of a jointly convex function subject to an affine

constraint. To show that L̄ (x, ·) is strictly convex, note that q 7→∑

v∈V uv` (qv/uv)

is strictly convex, and goes to infinity as ‖q‖ → ∞. Thus the minimum on a closed

convex set is uniquely attained: given any u ∈ [0,∞)|V| and β ∈ ∆d−1, there exists

q∗ (β) such that
∑

v∈V vq
∗
v = β, and L̄ (u, β) =

∑

v∈V uv` (q
∗
v/uv). Therefore for any
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β1 6= β2 and δ ∈ (0, 1),

δL̄ (u, β1) + (1 − δ) L̄ (u, β2) = δ
∑

v∈V
uv`

(

q∗v (β1)

uv

)

+ (1 − δ)
∑

v∈V
uv`

(

q∗v (β2)

uv

)

>
∑

v∈V
uv`

(

δq∗v (β1) + (1 − δ) q∗v (β2)

uv

)

≥ L̄ (u, δβ1 + (1 − δ)β2) .

The nonnegativity of L follows directly from the definition (3.5.1). For any a > 0,

by Remark 3.1.2, λv (·) is either identically zero or uniformly bounded below away

from zero on Sa. Fix any β ∈ ∆d−1. By Proposition 3.5.1, there exists q ∈ [0,∞)|V|

such that
∑

v∈V+
vqv = β, and qv = 0 for v ∈ V\V+. Since λv (·) is continuous, it

follows that L is uniformly continuous on compact subsets of int(S) × ∆d−1. The

strict convexity claim follows by noting L (x, ·) = L̄ (λ (x) , ·) for any x ∈ S.

The following elementary inequality can be proved using Legendre transforms.

Lemma 3.5.3. For a, q ∈ [0,∞) we have a`
(

q
a

)

+ a (e− 1) ≥ q.

We now study the asymptotic behavior of the proposed local rate function L.

Proposition 3.5.4. Given a > 0, there exist constants B = B (a) < ∞ and C2 =

C2 (B) , C3 = C3 (B) <∞, such that

L (x, β) ≤











C2 ‖β‖ log ‖β‖ if x ∈ Sa and β ∈ ∆d−1, ‖β‖ > B

C3 if x ∈ Sa and β ∈ ∆d−1, ‖β‖ ≤ B.

For B <∞ sufficiently large, there exists c1 = c1 (B) > 0 such that

L (x, β) ≥ c1 ‖β‖ log ‖β‖
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if x ∈ S and β ∈ ∆d−1, ‖β‖ > B. In particular, L (x, β) is superlinear in β, uniformly

in x.

Proof. Fix a > 0. For any B <∞, since
{

(x, β) ∈ Sa×∆d−1 : ‖β‖ ≤ B
}

is a compact

subset of int(S) × ∆d−1, the uniform boundedness of L on this set follows directly

from Lemma 3.5.2.

For the upper bound when ‖β‖ > B, we first assume ‖β‖ = 1. By Proposition

3.5.1, there exists a bounded vector q = q (β) ∈ [0,∞)|V|, such that
∑

v∈V+
vqv = β,

and qv = 0 for v ∈ V\V+. By taking an open cover on
{

β : β ∈ ∆d−1, ‖β‖ = 1
}

, one

can assume maxv,‖β‖=1 |qv (β)| is bounded. By scaling, it follows that there exists

some constant c0 > 0, such that for any β ∈ ∆d−1, there exists a vector q ∈ [0,∞)|V|

such that
∑

v∈V+
vqv = β, maxv |qv| ≤ c0 ‖β‖, and qv = 0 for v ∈ V\V+. It follows

that for some c4 <∞,

L (x, β) ≤ c4
∑

v∈V
qv log

qv

λv (x)
≤ C2 ‖β‖ log ‖β‖

if ‖β‖ ≥ B, for some B sufficiently large and x ∈ Sa. This finishes the proof of the

upper bound.

Now, consider the lower bound in {(x, β) : ‖β‖ > B, x ∈ S}. Using Proposition

3.4.3, we have for t > 0, a = t β
‖β‖ , and M <∞ defined as in (2.3.1),

L (x, β) ≥ 〈a, β〉 −H (x, a)

≥ t ‖β‖ −
∑

v∈V
λv (x) exp 〈a, v〉

≥ t ‖β‖ −M |V| exp

(

max
v∈V

‖v‖ t
)

.
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Setting t = 1
maxv∈V‖v‖ log ‖β‖, this implies

L (x, β) ≥ 1

maxv∈V ‖v‖
‖β‖ log ‖β‖ −M |V| ‖β‖ ≥ c1 ‖β‖ log ‖β‖ ,

for some constant c1 > 0, provided ‖β‖ is sufficiently large.

When applying Proposition 3.5.4, we will always assume (without mentioning

in explicitly) that B is chosen to be a sufficiently large number so that all parts of

Proposition 3.5.4 hold.

Proposition 3.5.5. Given 0 ≤ a < b ≤ 1 and ξ > 0, suppose that γ ∈ AC
(

[a, b] : Sξ
)

satisfies
∫ b

a
L (γ (s) , γ̇ (s)) ds <∞. Let

{

γδ
}

δ>0
∈ D

(

[a, b] : Sξ
)

be such that

supt∈[a,b]

∥

∥γδ (t) − γ (t)
∥

∥ → 0 as δ → 0. Then for any ε > 0, there exists δ0 =

δ0 (ξ, ε) > 0, such that for δ < δ0,
∣

∣

∣

∫ b

a
L (γ (s) , γ̇ (s)) ds −

∫ b

a
L
(

γδ (s) , γ̇ (s)
)

ds
∣

∣

∣ < ε.

Proof. Fix ξ > 0, 0 ≤ a < b ≤ 1. Let A0 ⊂ [a, b] be the set for which γ̇ (·) is

well defined, and let B = B (ξ/2) be the sufficiently large constant from Proposition

3.5.4. Then [a, b]\A0 has measure 0. Define A = {s ∈ A0 : ‖γ̇ (s)‖ ≤ B}. Given

ε > 0, choose B larger if necessary such that

∫

[a,b]\A

L (γ (s) , γ̇ (s)) ds ≤ ε. (3.5.5)

Then by dominated convergence and the continuity of L (·, β) for fixed β ∈ ∆d−1

established in Lemma 3.5.2, we have

∫

A

L
(

γδ (s) , γ̇ (s)
)

ds →
∫

A

L (γ (s) , γ̇ (s)) ds. (3.5.6)

Then, with constants C2 = C2 (B) , c1 = c1 (B) from Proposition 3.5.4, it follows
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that

∫

[a,b]\A

L
(

γδ (s) , γ̇ (s)
)

ds ≤ C2

∫

[a,b]\A

‖γ̇ (s)‖ log ‖γ̇ (s)‖ ds

≤ C2/c1

∫

[a,b]\A

L (γ (s) , γ̇ (s)) ds

≤ C2ε/c1.

Together with (3.5.5) and (3.5.6), this implies that for δ sufficiently small,

∣

∣

∣

∣

∫ b

a

L (γ (s) , γ̇ (s)) ds −
∫ b

a

L
(

γδ (s) , γ̇ (s)
)

ds

∣

∣

∣

∣

≤ ε+ ε+ C2ε/c1 = (2 + C2/c1)ε.

Lemma 3.5.6. Suppose that γ ∈ AC ([0, 1] : S) satisfies
∫ b

a
L (γ (s) , γ̇ (s)) ds < ∞

for some 0 ≤ a < b ≤ 1. Then

‖γ (t) − γ (a)‖ log
1

t− a
→ 0 as t ↓ a.

Proof. Fix t ∈ (a, b) and let A0 ⊂ [a, b] be the set for which γ̇ (·) is well defined.

Then [a, b]\A0 has measure 0. Now observe that ‖γ̇ (·)‖ log ‖γ̇ (·)‖ ∈ L1 ([a, b] : S).

Take some sufficiently large B <∞ from Proposition 3.5.4, and let

A = {s ∈ [a, b] : ‖γ̇ (s)‖ ≤ B}. Then by Proposition 3.5.4, there exists c1 = c1 (B),

such that

∫ b

a

‖γ̇ (s)‖ log ‖γ̇ (s)‖ ds ≤ 1

c1

∫

[a,b]\A

L (γ (s) , γ̇ (s)) ds +

∫

A

B logBds

≤ 1

c1

∫ b

a

L (γ (s) , γ̇ (s)) ds+ (B logB) (b− a) .

88



75

By Jensen’s inequality,

∫ t

a

‖γ̇ (s)‖ log ‖γ̇ (s)‖ ds ≥ (t− a)

∥

∥

∥

∥

γ (t) − γ (a)

t− a

∥

∥

∥

∥

log

∥

∥

∥

∥

γ (t)− γ (a)

t− a

∥

∥

∥

∥

= ‖γ (t) − γ (a)‖ log
‖γ (t) − γ (a)‖

t− a

The lemma follows by observing that both the left hand side and

‖γ (t) − γ (a)‖ log ‖γ (t) − γ (a)‖ goes to zero as t ↓ a.

Lemma 3.5.7. Let c0 (δ) be given such that c0 (δ) → 1 as δ → 0. Suppose that

x ∈ S,
{

xδ
}

δ>0
∈int(S), are such that

∥

∥x− xδ
∥

∥ → 0 as δ → 0, and for any δ > 0

and v ∈ V, λv(x)

λv(xδ)
≤ c0 (δ). Then there exists c = c (δ) that only depends on c0 (δ)

and
∥

∥x− xδ
∥

∥, and goes to zero as δ → 0, such that for any β ∈ C {v : v ∈ Vx},

L (x, β) ≤ (1 + c (δ))L
(

xδ, β
)

+ c (δ) .

Proof. Fix β ∈ C {v : v ∈ Vx}, and take q ∈ [0,∞)|V| such that
∑

v∈Vx
vqv = β and

qv = 0 for v ∈ V\Vx. By the continuity of {λv (·)} and the fact that they are either

identically zero or bounded uniformly from below in int(S) (Condition 3.1.1), it

follows that for x ∈int(S) and δ sufficiently small, Vxδ = Vx. For x ∈ ∂S, Vx ⊂ Vxδ

if
{

xδ
}

δ>0
approximate x from the interior. Therefore for δ sufficiently small, the

same vector q we take before satisfies
∑

v∈V
xδ
vqv = β and qv = 0 for v ∈ V\Vxδ. It

suffices to show that for any δ > 0,

∑

v∈Vx

λv (x) `

(

qv

λv (x)

)

≤ (1 + c (δ))
∑

v∈Vx

λv

(

xδ
)

`

(

qv

λv (xδ)

)

+ c (δ) , (3.5.7)

where c (δ) is independent of q.
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Note that there exist C1 <∞, such that

∑

v∈Vx

λv (x) `

(

qv

λv (x)

)

−
∑

v∈Vx

λv

(

xδ
)

`

(

qv

λv (xδ)

)

= −
∑

v∈Vx

qv log
λv

(

xδ
)

λv (x)
+
∑

v∈Vx

(

λv (x) − λv

(

xδ
))

≤ log c0 (δ)
∑

v∈Vx

qv + C1

∥

∥x− xδ
∥

∥

≤ log c0 (δ)
∑

v∈Vx

(

λv

(

xδ
)

`

(

qv

λv (xδ)

)

+ λv

(

xδ
)

(e− 1)

)

+ C1

∥

∥x− xδ
∥

∥

≤ log c0 (δ)
∑

v∈Vx

λv

(

xδ
)

`

(

qv

λv (xδ)

)

+ C2 (δ) ,

for C2 (δ) = log c0 (δ)M |V| (e− 1) + C1

∥

∥x− xδ
∥

∥, where the first inequality follows

from the assumption and Lipschitz continuity of {λv (·)}, and the second inequality

follows from Lemma 3.5.3 by taking a = λv

(

xδ
)

and q = qv. It suffices to take

c (δ) = max {log c0 (δ) , C2 (δ)}.

Notice that for β /∈ C {v : v ∈ Vx}, the conclusion of the above Lemma holds

trivially since the right hand side is infinity.

For t ∈ [0, 1] and c > 0, define

γc (s) = γ (cs) , s ∈ [0, t] ,

which is a time reparametrization of γ. The next result is used in the proof of the

locally uniform LDP in Section 3.7. It states that given a path γ with finite cost,

the cost of the path depends continuously on the reparametrization of time.

Proposition 3.5.8. For t ∈ [0, 1) given, suppose γ ∈ AC ([0, 1] : S) is such that

It (γ) <∞. Then the function c 7→ It/c (γc) is continuous at 1.
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Proof. First note that for c close to 1, γc ∈ AC ([0, t/c] : S) and

It/c (γc) =

∫ t/c

0

L (γ (cs) , cγ̇ (cs)) ds =
1

c

∫ t

0

L (γ (r) , cγ̇ (r)) dr.

It suffices to bound the integral of 1
c
L (γ, cγ̇) − L (γ, γ̇). Recall the definition of L

in (3.1.3). Since γ is absolutely continuous, γ̇ (u) is a.s. well defined. For any fixed

u ∈ [0, t] such that γ̇ (u) is well defined, for any ε > 0, there exists q ∈ [0,∞)|V|, such

that
∑

v∈V vqv = cγ̇ (u) and

∑

v∈V
λv (γ (u)) `

(

qv/c

λv (γ (u))

)

≤ L (γ (u) , γ̇ (u)) + ε.

We also have

∑

v∈V
λv (γ (u)) `

(

qv/c

λv (γ (u))

)

=
∑

v∈V

(

qv

c
log

qv/c

λv (γ (u))
− qv

c
+ λv (γ (u))

)

=
1

c

∑

v∈V

(

qv log
qv

λv (γ (u))
− qv + λv (γ (u))

)

+

(

1

c
log

1

c

)

∑

v∈V
qv

+

(

1 − 1

c

)

∑

v∈V
λv (γ (u))

≥ 1

c
L (γ (u) , cγ̇ (u)) +

(

1

c
log

1

c

)

∑

v∈V
qv +

(

1 − 1

c

)

∑

v∈V
λv (γ (u)) .

Thus

1

c
L (γ (u) , cγ̇ (u))−L (γ (u) , γ̇ (u)) ≤ ε−

(

1

c
log

1

c

)

∑

v∈V
qv −

(

1 − 1

c

)

∑

v∈V
λv (γ (u)) .

(3.5.8)
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Similarly, by taking q ∈ [0,∞)|V|, such that
∑

v∈V vqv = γ̇ (u) and

∑

v∈V
λv (γ (u)) `

(

cqv

λv (γ (u))

)

≤ L (γ (u) , cγ̇ (u)) + cε,

an analogous computation yields

1

c
L (γ (u) , cγ̇ (u)) − L (γ (u) , γ̇ (u)) ≥ (log c)

∑

v∈V
qv −

(

1 − 1

c

)

∑

v∈V
λv (γ (u)) − ε.

(3.5.9)

We apply Lemma 3.5.3 with a = λv (γ (u)) and q = qv/c, and the boundedness

of λv to obtain

1

c

∑

v∈V
qv ≤

∑

v∈V

(

λv (γ (u)) `

(

qv/c

λv (γ (u))

)

+ λv (γ (u)) (e− 1)

)

≤ L (γ (u) , γ̇ (u)) + ε+ c1

for some c1 < ∞. Thus, combining with (3.5.8) and (3.5.9), we see that for

c sufficiently close to 1,

∣

∣

∣

∣

1

c
L (γ (u) , cγ̇ (u)) − L (γ (u) , γ̇ (u))

∣

∣

∣

∣

≤ M |V|
∣

∣

∣

∣

1 − 1

c

∣

∣

∣

∣

+ max

{

log
1

c
, c log c

}

(L (γ (u) , γ̇ (u)) + ε+ c1) + ε.

Since I (γ) is finite, one can integrate over [0, t], take c→ 1, and then send ε → 0 to

complete the proof.

3.6 Proof of the LDP lower bound
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We now turn to the proof of the LDP lower bound. It suffices to show that for any

fixed trajectory γ ∈ D ([0, 1] : S), given any ε > 0 and δ > 0 there exists η > 0 such

that if ‖µn (0) − γ (0)‖ < η for all n large enough,

lim inf
n→∞

1

n
log P (‖µn − γ‖∞ < δ) ≥ −I (γ) − ε.

Without loss of generality we assume I (γ) <∞.

One source of difficulty here is that the transition rates of µn may tend to zero

as µn approaches the boundary of S, which will lead to singularity of the local rate

function. Our approach here adapts an idea from the study of a discrete time model

in [15]. We first show that the singularity can be avoided except for t = 0, by slightly

perturbing the original path, with arbitrarily small additional cost.

3.6.1 Perturbation argument

We start with a direct evaluation of the hitting probability of jump Markov processes

on a finite state space.

Lemma 3.6.1. Let {Y (t)}t≥0 be a jump Markov process with finite state space

{s0, s1, ..., sn}. For i = 0, ..., n− 1, suppose that the jump rate from state si to si+1

is bi+1, and the sum of jump rates from state si to all other states is bounded above

by c <∞. If Y (0) = s0, then

P (Y (t) = sn) ≥
1

n!
(Πn

i=1bi) t
n exp (−ct) .

Proof. Let p (t) be the probability distribution of the process at time t: pi (t) =

P (Y (t) = si). Then the Kolmogorov forward equation takes the form ṗ = Ap,
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where A is the rate matrix for Y . By the comparison principle for ODEs, it follows

that pi (t) ≥ ri (t) for all i ∈ X , where r (t) is the solution to























ṙ0 = −cr0,

ṙi = biri−1 − cri, i = 1, ..., n,

r (0) = es0.

Solving this equation explicitly gives pn (t) ≥ rn (t) = 1
n!

(Πn
i=1bi) t

n exp (−ct) .

The idea of the perturbation argument is as follows. Recall the definition of Sa

in (3.5.2). For any a > 0 fixed, by Remark 3.1.2, the rates λv (·) are either identically

zero or uniformly bounded below away from zero within Sa. Therefore, a standard

approximation argument can be used to establish the LDP in Sa, uniformly with

respect to the initial condition. When γ (0) = x ∈ S/Sa, by using Condition 3.1.3,

one can construct a perturbed trajectory of γ, that hits Sa in an arbitrarily short

time as a → 0, and in such a way that the difference in cost between γ and the

perturbed trajectory can be made sufficiently small.

Lemma 3.6.2. Assume the family of jump rates {λv (x) , x ∈ S, v ∈ V} satisfies

Conditions 2.3.1, 3.1.1 and 3.1.3. Consider γ ∈ AC ([0, 1] : S) such that I (γ) <∞.

Then given any ε > 0, there exists b̃ > 0, D <∞ and a trajectory υ ∈ AC ([0, 1] : S)

such that

i) υ (0) = γ (0) and ‖υ − γ‖∞ < ε,

ii) υj (t) ≥ b̃tD for j = 1, ..., d and any t ∈ [0, 1],

iii) I (υ) ≤ I (γ) + ε.
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Proof. For 0 < ρ < 1 define υρ = ρµ + (1 − ρ) γ, where µ is the law of large

numbers trajectory defined in (2.3.2) with µ (0) = γ (0). Let Cd be the diameter of

S. Then we have ‖υρ − γ‖∞ = ρ ‖µ − γ‖∞ ≤ Cdρ. Also, one has the lower bound

υρ
j (t) ≥ ρµj (t) ≥ ρbtD for some D < ∞ by Condition 3.1.3. Therefore, it suffices

to show iii). We first show that there exists c (ρ) <∞ which goes to zero as ρ→ 0,

such that for any t ∈ [0, 1],

L (υρ (t) , γ̇ (t)) ≤ (1 + c (ρ))L (γ (t) , γ̇ (t)) + c (ρ) . (3.6.1)

Indeed, since γi (t) /υ
ρ
i (t) ≤ 1

1−ρ
and ‖υρ

i (t) − γi (t)‖ ≤ Cdρ for i = 1, ..., d, by

Condition 3.1.1

λv (γ (t))

λv (υρ (t))
≤
(

1

1 − ρ

)dC1

exp (f (ρ)) , for every v ∈ V ,

where f (ρ) = maxs∈[0,Cdρ] f0 (s). Since the right hand side goes to 1 as ρ→ 0, (3.6.1)

follows by applying Lemma 3.5.7 with x = γ (t) and xρ = υρ (t).

Likewise, µi (t)/υ
ρ
i (t) ≤ 1/ρ and ‖υρ

i (t) − µi (t)‖ ≤ Cd (1 − ρ) for i = 1, ..., d,

thus Condition 3.1.1 implies

λv (µ (t))

λv (υρ (t))
≤
(

1

ρ

)dC1

exp (f (1 − ρ)) . (3.6.2)

Therefore, by the definition of L (3.1.3) and the fact that µ̇ (t) =
∑

v∈V vλv (µ (t)),

we have

L (υρ (t) , µ̇ (t)) ≤
∑

v∈V
λv (υρ (t)) `

(

λv (µ (t))

λv (υρ (t))

)

≤ C2 log 1/ρ + C2f (1 − ρ) + C2

for some C2 <∞, where we apply (3.6.2) for the last inequality.
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By (3.6.1) and the convexity and nonnegativity of L (x, ·) stated in Proposition

3.5.2, one has

L (υρ (t) , υ̇ρ (t)) ≤ L (υρ (t) , γ̇ (t)) + ρL (υρ (t) , µ̇ (t))

≤ (1 + c (ρ))L (γ (t) , γ̇ (t)) + c5 (ρ) .

for c5 (ρ) = C2ρ log 1/ρ + C3ρf (1 − ρ) + C4ρ + c (ρ). Integrating both sides of the

last inequality over [0, 1], we get

I (υρ) ≤ (1 + c (ρ)) I (γ) + c5 (ρ) ,

and thus iii) holds with υ = υρ for ρ > 0 sufficiently small.

In view of Lemma 3.6.2, it suffices to establish the lower bound for paths γ ∈

AC ([0, 1] : S) with I (γ) <∞ that satisfy the additional condition

γi(t) ≥ b0t
D for some b0 > 0, D <∞ and for all t ∈ [0, 1]. (3.6.3)

3.6.2 Analysis for t ∈ [0, τ ]

Given δ > 0, for τ > 0 sufficiently small we can use excursion bounds for jump

Markov processes (Lemma 3.6.4 below) to establish a lower bound for the quantity

P

(

sup
t∈[0,τ ]

‖µn (t)− γ (t)‖ < δ

)

.

The more difficult part is to obtain for any 0 < σ < δ a lower bound for

P (‖µn(τ ) − γ(τ )‖ < σ) that is uniform in µn(0) as long as ‖µn(0) − γ(0)‖ is suffi-

96



83

ciently small.

Given ε > 0, τ ∈ (0, 1], for any σ > 0, define the penalty function g : S → R

g(x) =











0 ||x− γ(τ )|| < σ,

2ε else.
. (3.6.4)

We then have

P(‖µn(τ ) − γ(τ )‖ < σ) + e−2nε ≥ E [exp(−ng(µn(τ )))] . (3.6.5)

Recall from Theorem 3.3.6

− 1

n
log E [exp(−ng(µn (τ )))]

= inf
ᾱ∈A⊗|V|

b

Ē

[

∑

v∈V

∫ τ

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt+ g(µ̄n (τ )) : µ̄n = Λn (ᾱ, µn(0))

]

.

We now state the main result of this subsection.

Lemma 3.6.3. Assume the sequence of deterministic initial conditions {µn (0)}n∈N

converges to ρ0 ∈ S as n tends to infinity. Then, given ε > 0 and δ > 0, there exists

τ > 0 such that for any σ > 0, there exists η = η (σ) > 0, such that ‖ρ0 − γ (0)‖ ≤ η

implies

lim inf
n→∞

1

n
log P

(

‖µn (τ ) − γ (τ )‖ ≤ σ, sup
0≤s≤τ

‖µn(s) − γ (s)‖ ≤ δ

)

≥ −ε
2
.

Proof. The idea is to argue that for large n and small τ , µn stays close to a com-

municating path (defined in Condition 3.1.4) that connects γ (0) to γ (τ ). Since
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the jump rate is bounded below away from zero along such a path, one obtains a

nice upper bound for the cost. By Condition 3.1.4 and Remark 3.1.6, there exists

a communicating path φ ∈ C ([0, τ ] : S), with φ (0) = γ (0) and φ (τ ) = γ (τ ), and

F, U <∞, {vm}F
m=1 ⊂ V and 0 = t0 < t1 < · · · < tF = τ , such that

φ̇ (t) =
∑

v∈V
ᾱv(t)v, a.e. t ∈ [0, τ ] ,

where

ᾱv(t) =











U1[tm−1,tm) (t) if v = vm, m = 1, ..., F

0 v /∈ {vm}F
m=1 .

Also, by Condition 3.1.4 and (3.6.3), there exist c′, p,D <∞ and c0, c > 0, such that

‖ᾱv‖∞ =
1

τ

∫ τ

0

∥

∥

∥
φ̇ (t)

∥

∥

∥
dt ≤ c′

‖γ (τ ) − γ (0)‖
τ

, (3.6.6)

and

λvm (φ (s)) ≥ c
(

min
i
γi (τ )

)p

≥ c0τ
Dp, if s ∈ [tm−1, tm] , m = 1, ..., F . (3.6.7)

Define µ̄n = Λn (ᾱ, µn (0)), where Λn is as defined in (3.3.9). The LLN for Poisson

random measures implies that {µ̄n}n∈N
converges uniformly on [0, τ ] in probability

to µ̄, where µ̄ (0) = ρ0,

d

dt
µ̄ (t) =

∑

v∈V
ᾱv(t)v, a.e. t ∈ [0, τ ] . (3.6.8)

By the Lipschitz continuity of λv (·), the fact that ‖µ̄ (s) − φ (s)‖ = ‖ρ0 − γ (0)‖

since they use the same velocity, and (3.6.7), for any fixed τ , there exists some
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η0 (τ ) > 0, such that for any η ≤ η0 (τ ), if ‖ρ0 − γ (0)‖ ≤ η, then

λvm (µ̄(s)) ≥ c0
2
τDp, for s ∈ [tm−1, tm] , m = 1, ..., F . (3.6.9)

For η ≤ η0 (τ ), we can bound the cost along the path µ̄ by (each inequality will be

explained below)

Iτ (µ̄) ≤
∑

v∈V

∫ τ

0

λv (µ̄(t)) `

(

ᾱv(t)

λv (µ̄(t))

)

dt

≤ |V| τ
[

c′
‖γ (τ ) − γ (0)‖

τ

(

log ‖γ (τ )− γ (0)‖ − log

( c0
2
τDp+1

c′

))

+M

]

≤ C4 ‖γ (τ ) − γ (0)‖ log ‖γ (τ ) − γ (0)‖ + C4 ‖γ (τ )− γ (0)‖ log
1

τ
+ C4τ

(3.6.10)

for some C4 < ∞, where M is defined in (2.3.1). Here we used the definition of L

and (3.6.8) to obtain the first inequality; (3.6.6), (3.6.9), and (2.3.1) for the second

inequality. By Lemma 3.5.6, ‖γ (τ ) − γ (0)‖ log 1
τ
→ 0 as τ → 0, together with the

continuity of γ we obtain Iτ (µ̄) → 0.

We next bound the costs for the jump processes {µ̄n}n∈N
by making use of its law

of large numbers limit. For fixed τ , we use the fact that λv are Lipschitz continuous

(by Condition 2.3.1), and λvm(µ̄ (t)) is uniformly bounded below away from zero if

‖ρ0 − γ (0)‖ ≤ η0 (τ ) (by (3.6.9)). Therefore, λn
v (µ̄n (t)) ` (ᾱv/λ

n
v (µ̄n (t))) converges

in probability to λv (µ̄ (t)) ` (ᾱv/λv (µ̄ (t))) uniformly for t ∈ [0, τ ]. Then for η <

min {η0 (τ ) , σ/2}, applying the dominated convergence theorem and using the upper
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semicontinuity of g defined in (3.6.4), we have

lim sup
n→∞

Ē

[

∑

v∈V

∫ τ

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt+ g(µ̄n (τ )) : µ̄n = Λn (ᾱ, µn(0))

]

≤ Ē

[

∑

v∈V

∫ τ

0

λv (µ̄(t)) `

(

ᾱv(t)

λv (µ̄(t))

)

dt+ g(µ̄(τ ))

]

≤ C4 ‖γ (τ ) − γ (0)‖ log ‖γ (τ ) − γ (0)‖ + C4 ‖γ (τ ) − γ (0)‖ log
1

τ
+ C4τ,

where the last inequality follows from (3.6.10) and (3.6.4). Choose τ > 0 sufficiently

small such that the last expression is less than ε/2. Combining the last display

with the representation formula, for all sufficiently large n and sufficiently small η,

‖ρ0 − γ(0)‖ < η implies

−1

n
log E [exp(−ng(µn(τ )))] ≤ ε/2. (3.6.11)

When combined with (3.6.5), this gives a lower bound on P(‖µn(τ ) − γ(τ )‖ < σ).

We will conclude the argument by establishing an upper bound for the excur-

sion probability for µn during [0, τ ]. Given ε > 0, applying a standard martingale

inequality (stated as Lemma 3.6.4 below), for sufficiently small τ we have

P

(

sup
0≤s≤τ

‖µn(s) − µn(0)‖ > δ

3

)

≤ 2d exp (−nε) .

On the other hand, by taking τ smaller if necessary we can guarantee that

sups∈[0,τ ] ‖γ (s) − γ (0)‖ ≤ δ/3. It follows that for η ∈
[

0, δ
3

]

,

P

(

sup
0≤s≤τ

‖µn(s) − γ (s)‖ > δ

)

≤ P

(

sup
0≤s≤τ

‖µn(s) − µn(0)‖ > δ

3

)

≤ 2d exp (−nε)
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Combining this with estimates (3.6.5) and (3.6.11) we arrive at the desired conclu-

sion.

The following lemma is an adaptation of Lemma 2.3 in [13]. The lemma follows

from bounds for certain exponential martingales.

Lemma 3.6.4. Let C1 = maxv∈V ‖v‖ , C2 = M |V|C1, and define

¯̀(b) =̇
1

C1
b (log (b/C2) − 1)

for b > C2. Then ¯̀(b) /b → ∞ as b → ∞, and given any δ > 0, for all τ ≤ δ

2
√

dC2

P

(

sup
0≤t≤τ

‖µn (t) − µn (0)‖ ≥ δ

)

≤ 2d exp

(

−τn¯̀
(

δ

2
√
dτ

))

.

3.6.3 Analysis for t ∈ [τ, 1]

Let B (x, r) denote the open Euclidean ball centered at x with radius r. Also, for

γ ∈ AC ([τ, 1] : S) such that γ (τ ) = y, we denote

Iy (γ) =

∫ 1

τ

L (γ (s) , γ̇ (s)) ds,

to emphasize the dependence on y. Pyn and Eyn denote the probability and expecta-

tion, respectively, conditioned on µn (τ ) = yn. Define the mapping Λn
τ : A⊗|V|

b ×S →

D ([τ, 1] : S) by

Λn
τ (ᾱ, ρ) (t) = ρ+

∑

v∈V
v

∫

[τ,t)

∫

Y
1[0,ᾱv(s)](x)

1

n
Nn

v (dsdx),
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for ᾱ ∈ A⊗|V|
b and ρ ∈ S. It suffices to study a path γ that satisfies (3.6.3). Therefore

we can assume Iy(γ) < ∞, and that there exists ξ > 0 such that γ (t) lies in Sξ for

t ∈ [τ, 1]. We will prove the following uniform Laplace principle upper bound for

{µn (·)}n∈N
on [τ, 1]:

Proposition 3.6.5. Let ξ > 0 as defined in the previous paragraph, and fix y ∈

Sξ. Then there exists σ > 0 such that for any bounded and Lipschitz continuous

functional F on D ([τ, 1] : S),

lim inf
n→∞

inf
yn∈B(y,σ)

(

1

n
log Eyn [exp(−nF (µn))] −G (yn, F )

)

≥ 0, (3.6.12)

where

G (y, F ) = − inf
γ∈AC([τ,1]:Sξ)

[Iy(γ) + F (γ)] . (3.6.13)

In particular, this implies the uniform large deviation lower bound: for any ε > 0

and δ > 0, there exists σ > 0 such that for any yn ∈ B (γ (τ ) , σ),

lim inf
n→∞

1

n
log Pyn

(

sup
t∈[τ,1]

‖µn (t)− γ (t)‖ < δ

)

≥ −Iγ(τ ) (γ) − ε

2
.

The proof of Proposition 3.6.5 relies on the following approximation argument,

which we now establish.

Fix y ∈ Sξ and a bounded and Lipschitz continuous functional F on D ([τ, 1] : S).

By Proposition 1.2.7 of [12], to prove (3.6.12), it suffices to show that for any sequence

{yn}n∈N
such that ‖yn − y‖ → 0 as n→ ∞,

lim inf
n→∞

1

n
log Eyn [exp(−nF (µn))] ≥ G (y, F ) . (3.6.14)
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In other words, it suffices to show that for any ε > 0 and γε ∈ AC
(

[τ, 1] : Sξ
)

such that − (Iy(γε) + F (γε)) ≥ G (y, F )− ε,

lim inf
n→∞

1

n
log Eyn [exp(−nF (µn))] ≥ − (Iy(γε) + F (γε)) ,

or

lim sup
n→∞

−1

n
log Eyn [exp(−nF (µn))] ≤ Iy(γε) + F (γε).

Fix ε > 0 and denote γε simply by γ. We now approximate γ by a piecewise

linear path. Let ∆ = 1−τ
m

for some m ∈ N. For k = 0, 1, ..., m − 1 let a∆
k =

1
∆

∫ τ+(k+1)∆

τ+k∆
γ̇ (s) ds. Define

γ̇∆ (t) = a∆
k if t ∈ (τ + k∆, τ + (k + 1) ∆), k = 0, ..., m− 1,

and

γ∆ (t) = y +

∫ t

τ

γ̇∆ (s) ds for t ∈ [τ, 1] . (3.6.15)

Then γ∆ is the piecewise linear interpolation of the continuous process γ with mesh

size ∆. Note that for any v ∈ V and t ∈ [τ, 1], λv(γ
∆ (t)) is continuous and uniformly

bounded away from zero. The proof of (3.6.12) thus relies on the following standard

approximation result.

Lemma 3.6.6. Let γ ∈ AC
(

[τ, 1] : Sξ
)

, and define γ∆ as in (3.6.15). Then for any

ε > 0, there exists ∆0 (ε) > 0, such that for any ∆ < ∆0 (ε), and a.e. t ∈ [τ, 1],

there exists a piecewise constant vector q∆ (t) such that
∑

v∈V vq
∆
v (t) = γ̇∆ (t), and

∫ 1

τ

∑

v∈V
λv(γ

∆ (t))`

(

q∆
v (t)

λv(γ∆ (t))

)

dt ≤ Iy (γ) + ε. (3.6.16)

Proof. We first claim lim∆→0 I
y
(

γ∆
)

= Iy (γ). Define
{

x∆
k

}m−1

k=0
∈ [0,∞)|V| such
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that for v ∈ V ,

x∆
k,v =

1

∆

∫ τ+(k+1)∆

τ+k∆

λv (γ (s)) ds.

Define x∆ (t) = x∆
k if t ∈ [τ + k∆, τ + (k + 1) ∆). Recall the definition of L̄ given

in (3.5.4). By the joint convexity of L̄ established in Lemma 3.5.2 and Jensen’s

inequality,

∫ 1

τ

L̄
(

x∆ (s) , γ̇∆ (s)
)

ds = ∆
m−1
∑

k=0

L̄
(

x∆
k , ak

)

≤
m−1
∑

k=0

∫ τ+(k+1)∆

τ+k∆

L̄ (λ (γ (s)) , γ̇ (s)) ds = Iy (γ) .

Since Iy (γ) < ∞ by the continuity of L̄ and dominated convergence theorem we

conclude that

lim
∆→0

∫ 1

τ

L̄
(

x∆ (s) , γ̇∆ (s)
)

ds = Iy (γ) .

Furthermore, note that L̄
(

λv

(

γ∆ (s)
)

, γ̇∆ (s)
)

= L
(

γ∆ (s) , γ̇∆ (s)
)

, and

sups∈[τ,1]

∥

∥λv

(

γ∆ (s)
)

− x∆ (s)
∥

∥→ 0 as ∆ → 0. Apply Lemma 3.5.7, we have

Iy
(

γ∆
)

−
∫ 1

τ

L̄
(

x∆ (s) , γ̇∆ (s)
)

ds ≤ c (∆) sup
∆>0

∫ 1

τ

L̄
(

x∆ (s) , γ̇∆ (s)
)

ds+ c (∆)

≤ c (∆) Iy (γ) + c (∆) ,

for some c (∆) → 0 as ∆ → 0. The claim is proved on taking ∆ → 0.

For k = 0, ..., m− 1, fix some tk ∈ (τ + k∆, τ + (k + 1) ∆). We can take q∆
k ∈

[0,∞)|V| such that
∑

v∈V vq
∆
k,v = ak, and

L(γ∆ (tk) , γ̇
∆ (tk)) ≥

∑

v∈V
λv(γ

∆ (tk))`

(

q∆
k,v

λv(γ∆ (tk))

)

− ε

6
. (3.6.17)

Since γ∆ ∈ AC
(

[τ, 1] : Sξ
)

, by the uniform continuity property of rate function in
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the state variable, which is stated in Proposition 3.5.5, choosing ∆ sufficiently small

we have
∣

∣

∣

∣

∣

Iy
(

γ∆
)

−
m−1
∑

k=0

∫ (k+1)∆+τ

k∆+τ

L(γ∆ (tk) , γ̇
∆ (tk))dt

∣

∣

∣

∣

∣

<
ε

6
. (3.6.18)

Define

q∆ (t) = q∆
k (t) , if t ∈ (τ + k∆, τ + (k + 1) ∆) , k = 0, ..., m− 1.

Applying Lemma 3.5.7 again and integrate over t ∈ [τ, 1], there exists c′ (∆) which

goes to zero as ∆ → 0, such that

∫ 1

τ

∑

v∈V
λv(γ

∆ (t))`

(

q∆
v (t)

λv(γ∆ (t))

)

dt (3.6.19)

−
m−1
∑

k=0

∫ (k+1)∆+τ

k∆+τ

∑

v∈V
λv(γ

∆ (tk))`

(

q∆
k,v

λv(γ∆ (tk))

)

dt

≤ c′ (∆)
m−1
∑

k=0

∫ (k+1)∆+τ

k∆+τ

∑

v∈V
λv(γ

∆ (tk))`

(

q∆
k,v

λv(γ∆ (tk))

)

dt+ c′ (∆) .(3.6.20)

By (3.6.17), (3.6.18), and the fact that Iy
(

γ∆
)

is finite, one can take ∆ smaller if

necessary so that the LHS of (3.6.20) is less than ε/6. The conclusion follows by

combining (3.6.17), (3.6.18), (3.6.20), and the convergence of Iy
(

γ∆
)

to Iy (γ).

We now complete the proof of Proposition 3.6.5. By Lemma 3.6.6, for any ε > 0,

there exists ∆ sufficiently small and a collection of piecewise constant functions
{

q∆
v (·)

}

v∈V on [τ, 1] that satisfy (3.6.16). It follows directly from the LLN for Poisson

random measures that as n → ∞, µ̄n = Λn
τ

(

q∆, yn

)

converges uniformly on [τ, 1] in

probability to γ∆. Therefore, by the uniform continuity of λv (·) `
(

q∆
v /λv (·)

)

on Sξ

and the uniform convergence of λn
v (·) to λv (·) by Condition 2.3.1,

λn
v (µ̄n(·)) `

(

q∆
v (·) /λn

v (µ̄n(·))
)

converges uniformly on [τ, 1] in probability to

λv(γ
∆ (·))`

(

q∆
v (·) /λv(γ

∆ (·))
)

. Combining the variational representation formula
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(Theorem 3.3.6), (3.6.16), and the dominated convergence theorem, for any Lipschitz

continuous functional F on D ([τ, 1] : S), we have

lim sup
n→∞

−1

n
log Eyn [exp(−nF (µn))]

= lim sup
n→∞

inf
ᾱ∈A⊗|V|

b

Ēyn







∑

v∈V
∫ 1

τ
λn

v (µ̄n(t)) `
(

ᾱv(t)
λn

v (µ̄n(t))

)

dt+ F (µ̄n) :

µ̄n = Λn
τ (ᾱ, yn)







≤ lim sup
n→∞

Ēyn

[

∫ 1

τ

∑

v∈V
λn

v (µ̄n(t)) `

(

q∆
v (t)

λn
v (µ̄n(t))

)

dt+ F (µ̄n) : µ̄n = Λn
τ

(

q∆, yn

)

]

= Ēy

[

∫ 1

τ

∑

v∈V
λv(γ

∆ (t))`

(

q∆
v (t)

λv(γ∆ (t))

)

dt+ F (γ∆)

]

≤ Ēy

[

Iy (γ) + ε+ F (γ∆)
]

≤ Iy (γ) + F (γ) + 2ε

for all ∆ sufficiently small, where the last inequality follows from the continuity of F ,

and the fact that supt∈[τ,1]

∥

∥γ∆ (t) − γ (t)
∥

∥→ 0 as ∆ → 0. By the Markov property,

the LDP lower bound follows from Lemma 3.6.3 and Proposition 3.6.5.

3.7 The Locally Uniform LDP

We now turn to the proof of Theorem 3.1.15. Fix t ∈ [0, 1]. As shown in Corollary

3.1.11, one can express the rate function Jt of {µn (t)}n∈N
in terms of a variational

problem. In what follows, fix x ∈ S and {xn}n∈N
such that xn ∈ Sn and ‖xn − x‖ → 0

as n→ ∞.
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3.7.1 Proof of the upper bound

Given any ε > 0, recall that B (x, ε) denote the Euclidean ball centered at x with

radius ε. For n sufficiently large such that xn ∈ B̄ (x, ε), by the LDP upper bound

stated in Corollary 3.1.11,

lim sup
n→∞

1

n
log P (µn (t) = xn) ≤ lim sup

n→∞

1

n
log P

(

µn (t) ∈ B̄ (x, ε)
)

≤ −J̄ ε
t (µ0, x) ,

where we define

J̄ ε
t (µ0, x) = inf

{

It (γ) : γ ∈ D ([0, 1] : S) , γ (0) = µ0, γ (t) ∈ B̄ (x, ε)
}

. (3.7.1)

To prove the upper bound, it suffices to show that

lim inf
ε→0

J̄ ε
t (µ0, x) ≥ Jt (µ0, x) . (3.7.2)

Lemma 3.7.1. Assume Condition 3.1.14.i) holds. Then there exists a function

c : [0,∞) → [0,∞) such that

i). c (ε) → 0 as ε → 0, and

ii). given any ε > 0 and x, y ∈ S such that ‖x− y‖ < ε, one can construct a

path γ ∈ AC ([0, ε] : S) such that γ (0) = x, γ (ε) = y, and Jε (x, y) ≤ Iε (γ) ≤ c (ε),

where Iε, Jε are defined in (3.1.5), (3.1.9), respectively.

Before proving Lemma 3.7.1, we first describe how it can be used to prove Lemma

3.1.16 and (3.7.2).
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Proof of Lemma 3.1.16. For any ε > 0, take t > 0 and γ ∈ AC ([0, t] : S) such that

γ (0) = x, γ (t) = y, and It (γ) ≤ V (x, y) + ε/2. Given δ > 0, and any yδ ∈ S

such that
∥

∥yδ − y
∥

∥ ≤ δ, by Lemma 3.7.1, there exists a path ν ∈ AC ([0, δ] : S) with

ν (0) = y, ν (δ) = yδ with Iδ (ν) ≤ c (δ). Let γ̄ be the concatenation of γ and ν.

Then we have

V
(

x, yδ
)

≤ It+δ (γ̄) = It (γ) + Iδ (ν) ≤ V (x, y) + ε/2 + c (δ) .

It suffices to choose δ such that c (δ) ≤ ε/2. The other inequality (and the joint

continuity with respect to both variables) are proved in the same way.

We can complete the proof of the locally uniform LDP upper bound as follows.

For δ > 0, pick γ ∈ AC ([0, 1] : S) such that γ (0) = µ0, γ (t) ∈ B̄ (x, ε), and It (γ) ≤

J̄ ε
t (µ0, x) + δ. By Lemma 3.7.1 there exists a path ν ∈ AC ([0, ε] : S) with ν (0) =

γ (t), ν (ε) = x with Iε (ν) ≤ c (ε), where c (ε) → 0 as ε → 0. Let γ̄ be the

concatenation of γ and ν. We now rescale γ to obtain a new path: for c = (t+ ε) /t,

define γ̄c ∈ AC ([0, t] : S) by γ̄c (s) = γ̄ (cs), s ∈ [0, t]. Then γ̄c (0) = µ0, γ̄c (t) = x.

Moreover, by Proposition 3.5.8, for ε sufficiently small, It (γ̄c) ≤ It+ε (γ) + δ, and by

the construction above,

Jt (µ0, x) ≤ It (γ̄c) ≤ It+ε (γ) + δ = It (γ) + Iε (ν) + δ ≤ J̄ ε
t (µ0, x) + 2δ + c (ε) .

Taking the limit inferior as ε → 0 and then sending δ → 0, (3.7.2) follows.

Proof of Lemma 3.7.1. By Condition 3.1.14.i) and Remark 3.1.6, there exists a

strongly communicating path γ ∈ AC ([0, ε] : S) such that γ (0) = x, γ (ε) = y,

with constant speed U ≤ c′ ‖x− y‖ /ε ≤ c′. Precisely, there exist F < ∞ and
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0 = t0 < t1 < · · · < tF = 1, such that

γ̇ (t) =

F
∑

m=1

Uvm1[tm−1ε,tmε) (t) for a.e. t ∈ [0, ε] .

Since Iε (γ) =
∑F

m=1

(

Itmε (γ) − Itm−1ε (γ)
)

, it suffices to bound each term from

above.

Recall from (3.1.11) that for any j ∈ Nm, 〈ej, vm〉 < 0. Let

b1
.
= minm=1,...,F minj∈Nm |〈ej, vm〉| > 0. Note that for s ∈ [tm−1ε, tmε), and any

j ∈ Nm, γj (tmε) − γj (s) = −〈ej, vm〉U (tmε− s), and thus γj (s) ≥ b1U (tmε− s).

Therefore, by Definition 3.1.12, there exist constants c1 > 0, p1 < ∞, such that for

ε sufficiently small,

λvm (γ (s)) ≥ c1

(

∏

j∈Nm

γj (s)

)p1

≥ c̃1U
κ (tmε− s)κ ,

where κ = dp1 < ∞ and c̃1 = c1b
dp1
1 > 0. Thus, by taking qvm = U , and qv = 0 for

v 6= vm in the first line below, we have

L (γ (s) , γ̇ (s)) = inf
q:

P

v∈V vqv=γ̇(s)

∑

v∈V
λv (γ (s)) `

(

qv

λv (γ (s))

)

≤ λvm (γ (s)) `

(

U

λvm (γ (s))

)

+
∑

v∈V
λv (γ (s))

≤ U log

(

U

c̃1Uκ (tmε− s)
κ

)

− U + C2

≤ − (κ− 1)U logU − κU log (tmε− s) − U (1 + log c̃1) + C2,

for some constant C2 <∞. Therefore,

Itmε (γ) − Itm−1ε (γ) =

∫ tmε

tm−1ε

L (γ (s) , γ̇ (s)) ds

≤ −C3 (U) ε log ε+ C4 (U) ε
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for some constants C3 (U) , C4 (U) such that supU∈[0,c′] (C3 (U) ∨ C4 (U)) <∞. Sum-

ming over m, we have Jε (µ0, y) ≤ Iε (γ) ≤ c (ε), where c (ε) = O (ε| log ε|) as

ε → 0.

3.7.2 Proof of the Lower Bound

For the proof of the lower bound, take any ε > 0 small. Then by the Markov property

for {µn}, we have

Pµ0 (µn (t) = xn) ≥ Pµ0 (µn (t− ε) ∈ B (x, ε)) · inf
wn∈B(x,ε)∩Sn

Pwn (µn (ε) = xn) .

The LDP lower bound in Corollary 3.1.11 implies

lim inf
n→∞

1

n
log Pµ0 (µn (t− ε) ∈ B (x, ε)) ≥ −J ε

t−ε (µ0, x) ,

where

J ε
t (µ0, x) =̇ inf {It (γ) : γ ∈ D ([0, 1] : S) , γ (0) = µ0, γ (t) ∈ B (x, ε)} .

The proof of the lower bound will be complete if we can show both of the following:

i) lim supε→0 J
ε
t−ε (µ0, x) ≤ Jt (µ0, x).

ii) The Local Communication Property: There exist a function c : [0,∞) →

[0,∞) that satisfies c (ε) → 0 as ε → 0 and is such that for all ε > 0 sufficiently

small,

inf
wn∈B(x,ε)∩Sn

Pwn (µn (ε) = xn) ≥ exp (−nc (ε) + o (n)) .
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To prove the first property, we will use Proposition 3.5.8. For any δ > 0, take

γ ∈ AC ([0, 1] : S) such that γ (t) = x and It (γ) ≤ Jt (µ0, x) + δ. Take c = t/ (t− ε)

and consider the path γc ∈ AC ([0, t− ε] : S), such that γc (s) = γ (cs), s ∈ [0, t].

Then γc (0) = µ0, γc (t− ε) = x. By Proposition 3.5.8, given δ > 0, for ε sufficiently

small, It/c (γc) ≤ It (γ) + δ, and we have

J ε
t−ε (µ0, x) ≤ It−ε (γc) = It/c (γc) ≤ It (γ) + δ ≤ Jt (µ0, x) + 2δ,

and the conclusion follows by taking first ε→ 0 and then δ → 0.

Proof of local communication property. We will use Condition 3.1.14 and Lemma

3.6.1. Fix some wn ∈ B (x, ε) ∩ Sn, note that the probability of µn (ε) = xn is

no less than the probability that µn hitting xn at ε by passing through a given

discrete strongly communicating path φn that connects wn and xn.

By Condition 3.1.14, there exists F < ∞, 0 = t0 ≤ t1 ≤ · · · ≤ tF = 1, {vm}F
m=1,

and constants c1 > 0, c′, p1 <∞, such that the image of φn is Sn∩{φ (s) : s ∈ [0, ε]},

for some φ ∈ AC ([0, ε] : S) that satisfies φ (0) = x, and

φ̇ (s) =

F
∑

m=1

Uvm1[tm−1ε,tmε) (s) , a.e. s ∈ [0, ε] ,

with U = c′ ‖xn − wn‖ /ε ≤ c′. Also, for s ∈ [tm−1ε, tmε) and large n, λn
vm

(φn (s)) >

c1(
∏

j∈Nm

(φn)j (s))p1. Let z(m) = φn (tmε−). By the Markov property

Pwn (µn (ε) = xn) ≥ ∏

m

Pz(m)

(

µn ((tm+1 − tm) ε) = z(m+1)
)

, and it suffices to give a

lower bound for each term in the product. This will be proved by comparison with an-

other Markov process Zn. Thus, without modifying the notation, we let µn (t) denote

the process stopped when it first leaves the set of points {φn (s) : s ∈ [tm−1ε, tmε)}.

For each m and t ∈ [0, (tm+1 − tm) ε), define Zn to be the jump Markov process with
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Zn (0) = z(m), with the same set V of jump directions, and jump rates

λ̄v (x) =















nc1

(

∏

j∈Nm

xj

)p1

if v = vm

nM if v ∈ V/vm

so long as Zn stays in the set {φn (s) : s ∈ [tm−1ε, tmε)}, and with the process stopped

when it jumps off the line segment. Note that λ̄v (x) bounds λn
vm

(x) from below in

the set, while nM is an upper bound on all jump rates.

Let p (t) be the probability distribution of Zn (t): for any x ∈ Sn, px (t) =

P (Zn (t) = x). It satisfies the Kolmogorov forward equation

ṗ (t) =
∑

x,y∈Sn

(ey − ex) Āxy, (3.7.3)

where

Āxy =











λ̄n(y−x) (x) if n (y − x) ∈ V

0 else.

Also, the distribution of µn (t) satisfies

ṁ (t) =
∑

x,y∈Sn

(ey − ex)Axy,

where

Axy =











λn(y−x) (x) if n (y − x) ∈ V

0 else.

By construction

Pxm (µn ((tm+1 − tm) ε) = xm+1) ≥ Pxm (Zn ((tm+1 − tm) ε) = xm+1) .
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If l is the number of points in the discrete segment {φn (s) : s ∈ [tmε, tm+1ε)}, then

by Definition 3.1.13 l ≤ C2nε for some C2 < ∞. The product of the jump rates of

Zn along this segment satisfies

∏

x:x∈{φn(s):s∈[tmε,tm+1ε)}

(

nc1

(

∏

j∈Nm

xj

)p1
)

≥ cl1 (l!)
kmp1 /n(kmp1−1)l,

where km
.
= |Nm| ≤ d. The lower bound in the last inequality is achieved when

{φn (s) : s ∈ [tmε, tm+1ε)} is a segmemt that ends up on xm+1 ∈ ∂S, and for all

j ∈ Nm, xj = 1, ..., l along the segment. Then it follows from Lemma 3.6.1 that for

ε > 0 sufficiently small,

Pxm (µn ((tm+1 − tm) ε) = xm+1)

≥ Pxm (zn ((tm+1 − tm) ε) = xm+1)

≥ 1

l!
cl1 (l!)kmp1 /n(kmp1−1)l ((tm+1 − tm) ε)l exp (−nM |V| (tm+1 − tm) ε)

≥ cl1

(

l!

nl

)dp1−1

εl exp (−nM |V| ε)

≥ exp (nC2ε log c+ (dp1 − 1)nC2ε log (C2ε/e) + nC2ε log ε− nM |V| ε+ o (εn))

= exp (dp1n (C2ε log ε+O(ε)) + o (n)) ,

where for the third inequality we used the fact that the function x 7→ xl exp (−nbx)

is decreasing for l/n sufficiently small, and for the fourth inequality we used Stirling’s

approximation.

From this, we conclude Pw (µn (ε) = xn) ≥ exp (−nc (ε) +O(ε) + o (n)) with

c (ε) = O (ε log ε), as desired.
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Chapter Four

Markov Chain Approximation for

Quasipotentials
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This chapter studies Markov chain approximations for the quasipotential function

associated with the stationary measure of the mean field interacting particle systems.

In Section 4.1 we define the quasipotential as an optimal control problem, and state

basic assumptions that will be used in the proofs in Sections 4.2. Section 4.2 contains

the proof of a comparison lemma, which allows us to approximate the quasipotential

in a small region by solving a linear quadratic regulator problem. In Section 4.3 we

present the Markov chain approximation algorithm, following the general framework

of [29]. In Section 4.4 we construct different approximation schemes, and discuss

the method to solve the associated optimization problem. Finally, some numerical

examples are shown in Section 4.5.

4.1 Assumptions

We focus on the mean field interacting particle systems described in Chapter 2 with

K = 1. Specifically, the empirical measure process {µn (t) , t ≥ 0} is a càdlàg jump

Markov process that takes values in Sn, with its generator given by (2.2.1). We will

denote Γ1
ij (·) and α1

ij (·) (which are defined in Condition 2.3.3) simply as Γij (·) and

αij (·).

Following Theorem 2.3.2, {µn} satisfies a functional law of large numbers limit

µ, that solves the Kolmogorov forward equation











µ̇ (t) = µ (t)T Γ (µ (t)) ,

µ (0) = µ0.
(4.1.1)

And by Theorem 3.1.10, {µn} satisfy the sample path large deviation principle (LDP)
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with local rate function

L (x, β) = inf
q:1T q=β

d
∑

i=1

d
∑

j=1,j 6=i

αij (x) `

(

qij

αij (x)

)

, (4.1.2)

for x ∈ S and β ∈ ∆d−1=̇{β ∈ R
d :

∑d
i=1 βi = 0}. Here q is a d × d matrix

with nonnegative off-diagonal entries and qii = −∑d
j=1,j 6=i qij, and 1 = (1, ..., 1) is a

d-dimensional vector.

Fix x0 ∈ S, and let V be the quasipotential associated with {x0}. Specifically,

we define

V (x) = inf











∫ τ

0
L
(

φ (s) , φ̇ (s)
)

ds : φ ∈ AC ([0, τ ] : S) ,

φ (0) = x0, φ (τ ) = x, τ <∞











= inf











∫ τ

0
L
(

φ (s) ,−φ̇ (s)
)

ds : φ ∈ AC ([0, τ ] : S) ,

φ (0) = x, φ (τ ) = x0, τ <∞











. (4.1.3)

We call L the running cost of the associated control problem. It is equivalent to take

the infimum in (4.1.3) over all φ ∈ AC ([0,∞) : S) such that limt→∞ φ (t) = x0, see

[10], Lemma 2.

By Lemma 3.1.16, the quasipotential function thus defined is continuous (and

thus uniformly bounded) in S. We also denote

V =̇ sup
x∈S

V (x) . (4.1.4)

Let H be the Hamiltonian which is defined to be the Legendre transform of L:
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for x ∈ S and p ∈ ∆d−1,

H (x, p) =̇ sup
β∈∆d−1

{〈β, p〉 − L (x, β)} (4.1.5)

=
d
∑

i=1

d
∑

j=1,j 6=i

αij (x) (exp (pj − pi) − 1) .

The following result follows from Lemma 3.5.2.

Proposition 4.1.1. For any x ∈ S fixed, both L (x, ·) and H (x, ·) are strictly convex

on ∆d−1.

For simplicity we will use the following reduced coordinates. The coordinate

transformations I1 : (x1, ..., xd) → (x1, ..., xd−1) and

I2 : (x1, ..., xd) → (x2 − x1, ..., xd − x1) maps S and ∆d−1 respectively, into

S̄ = {x ∈ R
d−1 : xi ≥ 0 and

∑d−1
i=1 xi ≤ 1} and R

d−1. Under such coordinate

transformations, for i = 1, ..., d− 1, one can denote x̃i = xi, p̃i = pi+1 − p1. Then

x̃, p̃ ∈ R
d−1, and we can write H as

H (x̃, p̃) =
d
∑

i=1

d
∑

j=1,j 6=i

αij (x̃) (exp (p̃j−1 − p̃i−1) − 1) , (4.1.6)

where p̃0=̇0. With some abuse of notation, we still denote x̃, p̃ as x, p respectively,

in later sections.

Denote int(S) as the relative interior of S, and note that I1(int(S)) is open in

R
d−1. For any open set D ⊂ R

m, m ≤ d, and k ∈ N, denote Ck (D : R) as the space

of k times continuously differentiable functions on D. We will sometimes abuse

the notation, and write f ∈ Ck(int(S) : R) and g ∈ Ck
(

∆d−1 : R
)

if f ◦ I−1
1 ∈
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Ck(I(int(S)) : R) and g ◦ I−1
2 ∈ Ck

(

R
d−1 : R

)

. For f ∈ C1
(

int(S) ×∆d−1 : R
)

,

we use Dxi
f and Dpi

f to denote the partial derivative of f ◦ I−1
1 with respect to

x̃i and the partial derivative of f ◦ I−1
2 with respect to p̃i. For k ∈ N, higher order

derivatives Dk
x and Dk

p are defined in the same way.

The equilibrium point x0 of the law of large numbers dynamics (4.1.1) satisfies

L (x0, 0) = 0. In other words,

∑

i6=j

αij (x0) −
∑

k 6=j

αjk (x0) = 0, j = 1, ..., d.

A direct computation gives

Dpj
H (x0, 0) =

∑

i6=j+1

αi,j+1 (x0) −
∑

k 6=j+1

αj+1,k (x0) = 0, j = 1, ..., d− 1, (4.1.7)

Condition 4.1.2. Assume that there is a unique unstable equilibrium point x0 ∈int(S)

of the law of large numbers dynamics (4.1.1), in the sense that all eigenvalues of the

Hessian DxDpH (x0, 0) has negative real parts.

In this chapter we focus on the quasipotential associated with the unique unstable

equilibrium {x0}. We also assume some regularity condition on αij (·).

Condition 4.1.3. Assume αij (·) ∈ C3(int(S) : R).

Remark 4.1.4. Condition 4.1.3 implies that H, and therefore its Legendre dual L,

are C3 on int(S) × ∆d−1, in both variables. For H, the C3−regularity is a direct

consequence from (4.1.6). For L, this follows from the fact that since L (x, ·) is

strictly convex on the closed set ∆d−1 (by Proposition 4.1.1), the supremum in (4.1.5)

is uniquely attained, and thus L has the same regularity as H (a similar argument

is carried out in Lemma 4.2.1 below).
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Applying Theorem 2 of [10], Condition 4.1.3 implies that the quasipotential V

defined in (4.1.3) is C3 in some open neighborhood (relative to S) of x0 (which we

denote as D). We now define the region of strong regularity of V .

Definition 4.1.5. For V defined as in (4.1.3), a relatively open set Ω0 ⊂ S is called

a region of strong regularity of V if

i). V ∈ C3 (Ω0 : [0,∞)).

ii). For any initial condition x ∈ Ω0, there exists a unique the optimal trajec-

tory φ∗ in (4.1.3), that satisfies V (x) =
∫∞

0
L
(

φ∗ (s) ,−φ̇∗ (s)
)

ds, and the image

{φ∗ (s) : s ∈ [0,∞)} ⊂ Ω0.

For general definitions and properties of region of strong regularity, we refer

the reader to [19], Section 6.7. As shown there in the case of small noise diffusion

problems, the relatively open set Ω0 is connected, contains some neighborhood of x0,

and is also dense in S.

The optimal control problem (4.1.3) that defines the quasipotential V can be

associated with the solution of a Hamilton-Jacobi-Bellman equation. V can be char-

acterized (cf. [10], Section 3) as the maximal viscosity subsolution to the PDE

H (x,DV (x)) = 0, for x ∈ S\ {x0} (4.1.8)

V (x0) = 0,

where DV =̇
(

Dx1V, ..., Dxd−1
V
)

, and H is understand as in (4.1.6). Restricted to Ω0,

V is a classical (C3) solution to (4.1.8) with a local minimum at x0 (Corollary 5 of

[10]).
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4.2 A Comparison Lemma

In this section we provide a comparison lemma for two quasipotentials. We will con-

struct an approximation of the quasipotential (4.1.3), denoted as V (2), in a neigh-

borhood of x0, by taking the approximated running cost associated with the same

exit problem. The approximate quasipotential can be solved explicitly using linear

quadratic regulators. Later in Section 4.3 we will construct a discrete approxima-

tion of the solution to (4.1.8), and in particular its boundary value at x0 will be

approximated by V (2) in the intersection of the lattice and a ball contains x0. In

what follows we assume all the conditions stated in Section 4.1.

By Condition 4.1.3 and (4.1.6), we see that H (x, 0) = 0, and

Dk
xH (x, 0) = 0, k = 1, 2 (4.2.1)

for any x ∈int(S). Thus, recalling (4.1.7), for (x, p) near (x0, 0) we have the following

expansion:

H (x, p) =
1

2
pTAp+

1

2
(x− x0)

T Bp +
1

2
pTBT (x− x0) +O

(

‖x− x0‖3 + ‖p‖3)

=
1

2
pTAp+ (x− x0)

T Bp+O
(

‖x− x0‖3 + ‖p‖3) , (4.2.2)

where, using (4.1.6),

Aij = Dpi
Dpj

H (x0, 0)

=











∑d
k=1,k 6=i+1 αk,i+1 (x0) +

∑d
k=1,k 6=i+1 αi+1,k (x0) if i = j,

−αi+1,j+1 (x0) − αj+1,i+1 (x0) if i 6= j,
(4.2.3)
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and

Bij = Dxi
Dpj

H (x0, 0)

=

d
∑

k=1,k 6=j+1

∂

∂xi
αk,j+1 (x0) −

d
∑

k=1,k 6=j+1

∂

∂xi
αj+1,k (x0) . (4.2.4)

Since H (x, ·) is strictly convex on ∆d−1 by Proposition 4.1.1, A is a positive

definite matrix. Define

H(2) (x, p) =̇
1

2
pTAp+ (x− x0)

T Bp.

The Legendre transform of H(2) takes the form

L(2) (x, β) = sup
p∈∆d−1

[

〈β, p〉 −
(

1

2
pTAp+ (x− x0)

T Bp

)]

=
1

2

(

β − BT (x− x0)
)T
A−1

(

β − BT (x− x0)
)

, (4.2.5)

for x ∈ S and β ∈ ∆d−1. We claim that L(2) is the true quadratic approximation of

L, in the following sense.

Lemma 4.2.1. There exists ε > 0, such that for any (x, β) ∈ S × ∆d−1 with

‖x− x0‖ < ε and ‖β‖ < ε, L (x, β) = L(2) (x, β) +O
(

‖x− x0‖3 + ‖p‖3).

Proof. By taking ε smaller if necessary, we can assume without loss of generality that

x ∈int(S). By Remark 4.1.4, L ∈ C3(int(S)×∆d−1 : R). It suffices to show that the

partial derivatives of L and L(2) at (x0, 0) are equal up to the second order. It is clear

from the definition of the equilibrium point that L (x0, 0) = L(2) (x0, 0) = 0. Since

L (x, β) = supp (〈β, p〉 −H (x, p)), the fact that H is strictly convex in p (Proposition

4.1.1) implies that the supremum is attained at some unique p∗ = p∗ (x, β). By the
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implicit function theorem, the strict convexity of H (x, ·) and the fact that H is C3

in both variables (Remark 4.1.4), p∗ is C3 in both variables, satisfies p∗ (x0, 0) = 0

and

DpH (x, p∗ (x, β)) = β, for (x, β) ∈ int(S) ×∆d−1.

Using the fact that

L (x, β) = 〈β, p∗ (x, β)〉 −H (x, p∗ (x, β))

and DH (x0, 0) = 0, we obtain

DxL (x0, 0) = DpL (x0, 0) = 0,

D2
xxL (x0, 0) = −D2

xxH (x0, 0) ,

D2
xβL (x0, 0) = −D2

xpH (x0, 0)
(

D2
ppH (x0, 0)

)−1
,

D2
ββL (x0, 0) =

(

D2
ppH (x0, 0)

)−1
.

And similarly,

DxL
(2) (x0, 0) = DpL

(2) (x0, 0) = 0,

D2
xxL

(2) (x0, 0) = −D2
xxH

(2) (x0, 0) ,

D2
xβL

(2) (x0, 0) = −D2
xpH

(2) (x0, 0)
(

D2
ppH

(2) (x0, 0)
)−1

,

D2
ββL

(2) (x0, 0) =
(

D2
ppH

(2) (x0, 0)
)−1

.

The claim then follows by noting that the partial derivatives of H and H(2) at (x0, 0)

are equal up to the second order.

Note that V (x0) = 0. Since H (x0, 0) = 0, H (x0, ·) is nonnegative and strictly

convex, H (x0, p) = 0 if and only if p = 0. Therefore within a neighborhood of x0, V
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is C3 and DV (x0) = 0 by (4.1.8). One can then expand V near x0 as

V (x) = (x− x0)
T P̄ (x− x0) +O

(

‖x− x0‖3) . (4.2.6)

Since (x0, 0) is an unstable equilibrium for the corresponding Hamiltonian system,

P̄ is a symmetric positive definite matrix (see Section 4 of [10]). We are interested

in obtaining the second order approximation of V near x0, i.e. in identifying P̄ in

(4.2.6). Define V (2) as the solution to the same exit problem as in (4.1.3) but with

the running cost L(2) instead of L:

V (2) (x) = inf











∫ τ

0
L(2)

(

φ (s) ,−φ̇ (s)
)

ds : φ ∈ AC ([0, τ ] : S) ,

φ (0) = x, φ (τ ) = x0, τ <∞











. (4.2.7)

Substituting the expression for L(2) from (4.2.5), we can rewrite V (2) as

V (2) (x) = inf











∫ τ

0
1
2
u (s)T A−1u (s) ds : φ̇ = −BT (φ− x0) − u,

φ (0) = x, φ (τ ) = x0, τ <∞











. (4.2.8)

This is the control problem associated with the linear quadratic regulator, which is

known to admit an explicit solution. Specifically, it is known (see e.g. Chapter 8.2

of [37]) to be a quadratic function V (2) (x) = (x− x0)
T
P (x− x0), x ∈ S, with P

being the maximal solution of the algebraic Ricatti equation,

BP + PBT + 2PAP = 0, (4.2.9)

where A and B are defined in (4.2.3) and (4.2.4), respectively.

In the next theorem, we show that P = P̄ , and V (2) is indeed the second order

approximation of V .
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Theorem 4.2.2. There exists δ > 0, such that for any ‖x− x0‖ < δ, we have

∣

∣V (x) − V (2) (x)
∣

∣ = O
(

‖x− x0‖3) .

Proof. Since DV (x) = 2P̄ (x− x0) + O(‖x− x0‖2), substitute the expansion of

Hamiltonian (4.2.2) into the Hamilton-Jacobi equation (4.1.8), we obtain

(x− x0)
T (BP̄ + P̄BT + 2P̄AP̄

)

(x− x0) +O
(

‖x− x0‖3) = 0,

and therefore

BP̄ + P̄BT + 2P̄AP̄ = 0. (4.2.10)

The maximality of P in (4.2.9) therefore implies V (x) ≤ V (2) (x) +O(‖x− x0‖3).

To prove the other inequality, for y in some neighborhood of x0, (4.1.8) and

the definition of H via (4.1.5) implies the optimal velocity β∗ = β∗ (y) is uniquely

attained, and satisfies

〈DV (y) , β∗〉 − L (y, β∗) = 0. (4.2.11)

And the optimal path ϕ of (4.1.3) takes the form

ϕ̇ (t) = −β∗ (ϕ (t)) , (4.2.12)

ϕ (0) = x.

By the implicit function theorem for vector valued functions, β∗ (·) is at least C2 in

a neighborhood of x0, β
∗ (x0) = 0, and near x0 it admits Taylor expansion β∗ (y) =

E (y − x0)+O(‖y − x0‖2). Now recall the quadratic approximation of L near (x0, 0)
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in (4.2.5). Looking at the O(‖x− x0‖2) term in (4.2.11), one obtains

ET P̄ + P̄E − 1

2

(

ET −B
)

A−1
(

E − BT
)

= 0.

Using (4.2.10), we see that E = BT + 2AP̄ solves the above algebraic equation. To

see the solution is unique, take E = BT + 2AP̄ + X in the above equation, an we

obtain 1
2
XA−1X = 0, the positive definiteness of A thus implies X = 0. Therefore,

β∗ (y) =
(

BT + 2AP̄
)

(y − x0) +O(‖y − x0‖2).

Note that U (x) = (x− x0)
T P̄ (x− x0) is a Lyapunov function to (4.2.12). In

fact, there exists δ, c0 > 0, such that for any ‖ϕ (t)− x0‖ < δ,

d

dt
U (ϕ (t)) = (ϕ (t) − x0)

T (−BP̄ − P̄BT − 4P̄AP̄
)

(ϕ (t) − x0)

+ O
(

‖ϕ (t)− x0‖3)

= −2 (ϕ (t)− x0)
T
P̄AP̄ (ϕ (t)− x0) +O

(

‖ϕ (t)− x0‖3)

≤ −c0 ‖ϕ (t)− x0‖2 .

Where we use (4.2.10) to obtain the second equality, and the strict positive defi-

niteness of P̄AP̄ to obtain the last inequality. Also, the strict postitive definite-

ness of P̄ implies there exists K1 > 0 and K2 < ∞ such that K1 ‖y − x0‖2 ≤

U (y) ≤ K2 ‖y − x0‖2
. Applying a version of Lyapunov exponential stability the-

orem for quadratic Lyaponov functions (see, e.g. Theorem 3.4 of [32]), there ex-

ist C1 = C1 (δ) , C2 = C2 (δ) > 0, C3 = C3 (δ), such that for ‖x− x0‖ < δ,

‖ϕ (t) − x0‖ ≤ C1 ‖x− x0‖ e−C2t and ‖ϕ̇ (t)‖ ≤ C3 ‖x− x0‖ e−C2t. Taking this so-

lution to be the control picked in (4.2.8), we obtain constants C4, C5 < ∞, such
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that

V (2) (x) ≤
∫ ∞

0

L(2) (ϕ (s) ,−ϕ̇ (s)) ds

≤
∫ ∞

0

[

L (ϕ (s) ,−ϕ̇ (s)) + C4

(

‖ϕ (t) − x0‖3 + ‖ϕ̇ (t)‖3)] ds

≤ V (x) + C5 ‖x− x0‖3

∫ ∞

0

e−3C2tdt

= V (x) +
C5

3C2
‖x− x0‖3 .

4.3 Markov Chain Approximations

We now adapt the methods in [29] and [4] to construct a discrete approxima-

tion to the solution of the optimal control problem (4.1.3). Following [4], we con-

struct value functions defined on lattice approximations of S, that solve discrete

analogs of Hamilton-Jacobi-Bellman equations. Before describing the construction

we point out the special features of the model that did not appear in [29] and

[4]. First, the set of all possible jump directions of the Markov process (2.2.1) is

V=̇ {ej − ei : i, j = 1, ..., d, i 6= j}, which is different from the usual nearest neighbor

random walks on square lattices. Second, the boundary for our exit problem is the

singleton {x0}. We take a sequence of sets Bh ⊂ Sh (that shrink to {x0} as h → 0)

to approximate this boundary, and assign the boundary conditions on Bh by the

quadratic approximation V (2) studied in the previous section (which can be obtained

by solving (4.2.9) for its Hessian). These differences will affect our construction of

the Markov chain approximations and the convergence proof.

We now construct a discrete time, discrete state controlled random walk that
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approximates the dynamics −φ̇ = u as h→ 0.

For h > 0, we consider the controlled Markov chain ξh with state space Sh=̇hZ
d∩

S. Since by taking an affine map S maps to some S̄ ⊂ R
d−1, Sh can also be identified

with hT
d−1 ∩ S̄, where T

d−1 is the d − 1 dimensional triangular (simplicial) lattice.

Also, define Bh =
{

x ∈ Sh : ‖x− x0‖ ≤ C0h
1/3
}

, where C0 < ∞ is a constant to

be chosen, and since it will not affect the convergence rate of the algorithm, we set

C0 = 1 for simplicity.

The control space and dynamics can be described as follows. In the limiting

calculus of variation problem (4.1.3), the control takes value in measurable functions

on [0,∞). In discrete time formulation of the Markov chain approximation, for fixed

h > 0, we work with time and state dependent controls {uh
j (x) : j ∈ N, x ∈ Sh},

with uh
j (·) taking value in the control space ∆d−1. One can construct the controlled

random walk using different class of controls. We choose to work with feedback

controls, because it is simple, also because the state space Sh is finite, and the running

cost L is strictly convex (thus grows superlinearly) in the control, the optimal control

sequence for our discrete value function (introduced in (4.3.6) below) is uniquely

attained.

Given the feedback control {uh
j (·)}j∈N, we can define a discrete time controlled

random walk ξh. Namely, for j ∈ N, ξh
j+1 is obtained by updating ξh

j with transition

probability ph(ξh
j , y|uh

j (ξ
h
j )), the time interpolation ∆th(ξh

j , u
h
j (ξ

h
j )). According to

[29], ph and ∆th should be chosen to satisfy the local consistency relations:

h
∑

v∈V
vph (x, x+ hv|u) = u∆th (x, u) , (4.3.1)
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and
∑

v∈V

∥

∥hv − u∆th (x, u)
∥

∥

2
ph (x, x+ hv|u) = o

(

‖u‖∆th (x, u)
)

. (4.3.2)

Take a subset V∗ ⊂ V , so that ∆d−1 can be decomposed as union of cones Ci,

each of which is generated by d − 1 linearly independent vectors in V∗, which we

denote as Bi:

Ci =

{

u ∈ ∆d−1 : u =
∑

v∈Bi

cvv, cv ≥ 0

}

.

We also require these cones are minimal, in the sense that for any v ∈ V∗\Bi, v /∈ Ci.

Given u belongs to some Ci, u can be written uniquely as a linear combination

u =
∑

v∈Bi

uvv (4.3.3)

for non-negative {uv}v∈Bi
, and we set uv = 0 for v ∈ V\Bi. One natural choice of

(

ph,∆th
)

is to set

ph (x, y|u) =











uv

‖u‖1
if y = x+ hv, v ∈ Bi

0 otherwise
, for u ∈ Ci, (4.3.4)

where ‖u‖1 =̇
∑

v∈V uv, and

∆th (u) =
h

‖u‖1

. (4.3.5)

Let D
(

[0,∞) : R
d
)

denote the space of càdlàg paths in R
d. Equipped with the

Skorohod metric, this becomes a complete separable metric space. One can also

take a continuous time interpolation, so that {ξh
j }j∈N, {uh

j (·)}j∈N become elements

of D
(

[0,∞) : R
d
)

. They can be constructed recursively as follows. At t = 0, take

ξh (0) = ξh
0 ∈ Sh, uh (0) = uh

0

(

ξh
0

)

∈ ∆d−1, and set ∆th
(

uh
0

)

by (4.3.5). For s ∈

[0,∆th
(

uh
0

)

), define ξh (s) = ξh
0 and uh (s) = uh

0

(

ξh
0

)

. Suppose for some k ∈ N,
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{

ξh
i

}

i≤k−1
and

{

uh
i

}

i≤k−1
have been defined, we set tk =

∑k−1
i=0 ∆th

(

uh
i

(

ξh
i

))

. At tk,

update the value of ξh (denote as ξh
k ) using (4.3.4) with the control uh

k−1

(

ξh
k−1

)

, and

denote uh (tk) =̇uh
k

(

ξh
k

)

. Let tk+1 =
∑k

i=0 ∆th
(

uh
i

(

ξh
i

))

, and for s ∈ [tk, tk+1), define

ξh (s) = ξh
k and uh (s) = uh

k

(

ξh
k

)

. We will switch between the discrete and continuous

time description of ξh and uh, whichever is more convenient.

Given a feedback control {uh
j (·)}j∈N and a controlled random walk {ξh

j }j∈N, we

can decompose the random walk into a drift part and a local martingale with mean

zero: ξh
k = E

(

ξh
k |uh

k−1

(

ξh
k−1

))

+mh
k, where E

(

ξh
k |uh

k−1

(

ξh
k−1

))

= huh
k−1/

∥

∥uh
k−1

∥

∥

1
.

Now consider the following optimal control problem on Sh. For x ∈ Bh, we set

V h (x) = V (2) (x). For x ∈ Sh\Bh, the value function is defined by

V h (x) = inf
uh∈D([0,∞):∆d−1)

Ex

[

∫ τh

0

L(ξh (s) ,−uh(s))ds+ V (2)(ξh(τh))

]

, (4.3.6)

where Ex denotes the expectation conditioned on ξh (0) = x, and the exit time

τh = inf
{

s : ξh (s) ∈ Bh
}

.

It is shown in [4], Section 3 (see also Chapter 5.8 of [29]), that V h solves the

discrete dynamic programming equation

V h (x) = inf
u∈∆d−1

[

∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) + L (x,−u)∆th (u)

]

, x ∈ Sh\Bh,

V h (x) = V (2) (x) , x ∈ Bh, (4.3.7)

where ph and ∆th are given by (4.3.4) and (4.3.5), respectively. This is our starting

point for numerical approximations. Note that the discrete dynamic programming

equation also holds when x is on ∂S.

129



116

V h can also be interpreted as a solution to a discrete HJB equation. For u ∈ ∆d−1,

let {uv}v∈V be given by (4.3.3), and we define Dh
u to be the weighted finite difference

operator, given by

Dh
uf (x) =

∑

v∈V
uv
f (x+ hv) − f (x)

h
, x ∈ Sh,

for every bounded function f : Sh → R. Then, subtracting V h (x) from both sides

in (4.3.7), and dividing by ∆th (u), one obtains

0 = inf
u∈∆d−1

[

Dh
uV

h (x) + L (x,−u)
]

, x ∈ Sh\Bh, (4.3.8)

V h (x) = V (2) (x) , x ∈ Bh.

4.4 Numerical Approximations

We now construct numerical schemes for the Markov chain approximation that satisfy

local consistency properties (4.3.1) and (4.3.2). The controlled random walk should

be defined in such a way that the transition probability has a simple expression, the

dynamic programming equation (4.3.7) can be explicitly solved, and the data can

propagate quickly from the boundary. We discuss below two choices of controlled

random walks that satisfy these criteria.

Note that in the problem (4.3.7) there are two layers of infimization: the first

infimization is over all the controlled jump rates (in the definition of L (x,−u) in

(4.1.2)) that lead to a given drift vector u, the second infimization is over u ∈ ∆d−1.

We start with a lemma that simplifies the problem into a single infimization over the

controlled rates.
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Lemma 4.4.1. For any h > 0 and x ∈ Sh,

inf
u∈∆d−1

[

∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) + L (x,−u)∆th (u)

]

(4.4.1)

= inf
{āv}∈[0,∞)|V|

{

∑

v∈V
ph

(

x, x+ hv| −
∑

v∈V
vāv

)

V h (x+ hv)

+

(

∑

v∈V
αv (x) `

(

āv

αv (x)

)

)

∆th

(

−
∑

v∈V
vāv

)}

. (4.4.2)

Proof. Recall that L (x,−u) = inf{āv}:−u=
P

vāv

∑

v∈V αv (x) `
(

āv

αv(x)

)

. For any fixed

u ∈ ∆d−1, since the function {āv} 7→ ∑

v∈V αv (x) `
(

āv

αv(x)

)

is strictly convex on

[0,∞)|V|, the infimum in the definition of L (x,−u) is uniquely attained at some

{ā∗v (x, u)} ∈ [0,∞)|V| such that −u =
∑

v∈V vā
∗
v. Therefore,

∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) + L (x,−u)∆th (u)

=
∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) +

(

∑

v∈V
αv (x) `

(

ā∗v
αv (x)

)

)

∆th (u) .

Taking the infimum over u ∈ ∆d−1 one obtains the left hand side of (4.4.1) is greater

than or equal to the right hand side.

To prove the other inequality, take any {āv} ∈ [0,∞)|V|, and let u ∈ ∆d−1 be

given by −u =
∑

v∈V vāv. Then we have

∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) + L (x,−u)∆th (u)

≤
∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) +

(

∑

v∈V
αv (x) `

(

āv

αv (x)

)

)

∆th (u) .

Infimize over all {āv} ∈ [0,∞)|V|, one obtains the reverse inequality.
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We next state a result which gives the structure of the minimum of the opti-

mization problem (4.4.1). The strictly convexity and uniform superlinear growth of

L (x, ·) implies the local minimum of (4.4.1) is uniquely attained, and is also the

global minimum. We start with a result in convex analysis proved in [4].

Lemma 4.4.2 (Lemma 7.1 of [4]). Let g : [0,∞) → R be strictly convex and satisfy

g (0) > 0 and limk→∞ g (z) /z = ∞. Then there is a unique point x ∈ (0,∞) that

achieves the infimum in infz≥0 g (z) /z. x is also the unique local minimum of the

map z 7→ g (z) /z.

Lemma 4.4.3. There exists a unique local minimizer of the optimization problem

(4.4.1), which is also the global minimizer.

Proof. For z ≥ 0, define

g (z) = inf
u∈∆d−1:‖u‖1=z

z

[

∑

v∈V
ph (x, x+ hv|u)V h (x+ hv) + L (x,−u)∆th (u)

]

= inf
u∈∆d−1:‖u‖1=z

[

∑

v∈V
uvV

h (x+ hv) + L (x,−u)h
]

,

where we used the definition 4.3.4 and 4.3.5 to obtain the last equality. By Proposi-

tion 4.1.1, we see that g is the minimum of a strictly convex function subject to an

affine constraint, which is itself strictly convex. Moreover, for fixed z, there exists

a unique u∗ ∈ ∆d−1, ‖u∗‖1 = z such that the minimum is attained. For x /∈ Bh,

g (0) = L (x, 0)h > 0. The superlinear growth of L (see Proposition 3.5.4) im-

plies that limk→∞ g (z) /z = ∞. The conclusion then follows by applying Lemma

4.4.2.
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4.4.1 Iterative solver: The widest neighborhood structure

We employ Gauss-Seidel iterative method to solve the dynamical programming equa-

tion (4.3.7) (see Section 4.5 for more details). By Lemma 4.4.3, if one can find a

local minimizer to (4.3.7), it gives the global minimum. The strategy to solve the

minimizer in (4.3.7) or (4.4.2) is to solve the infimization in each cone Ci (introduced

in Section 4.3), and then minimize over all cones. To put it in more detail, the

first step is to consider the relative interior of a cone, and look for local minimum

as if there were no constraints. We will do this computation in Section 4.4.1 and

4.4.2. If the infimum of this problem is finite, some nonnegativity constraints are

tested for each candidate minimizer. If these constraints are satisfied, then a local

minimum is found. If none of the candidate minimizer satisfies the constraints, then

the unique minimizer must be on the boundary of one of the cones. We then search

these boundaries that form lower dimensional (d − 2, d − 3,...) hyperplanes of R
d.

The procedure ends by searching through all the lower dimensional boundaries until

the local minimum is found.

We now focus on the optimization problem (4.4.2) inside a given cone. Different

choices of V∗ lead to different {Ci} (which we call ”neighborhood structures”), and the

choice should balance the tradeoff between the explicit solvability of the infimizer in

(4.4.2), and the number of constrained minimization problems that must be solved as

dimension grows. We present below two different neighborhood structures in Section

4.4.1 and 4.4.2.

We start with a neighborhood structure with the widest possible cone, so that

boundary data can propagate quickly through the iteration. The disadvantage of

this approach, as we will see below, is that the infimization problem becomes more
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complicated as d gets large.

Take a set of vectors (w1, ..., wd) = (e2 − e1, e3 − e2, ..., e1 − ed), so that any d−1

of them form a basis for ∆d−1. For any x ∈ Sh\Bh, take V∗=̇ {wi : i = 1, ..., d}.

Since V∗ ⊂ V , for each v ∈ V∗, we use āij to denote āv in (4.4.2) if v = ej − ei. Given

u ∈ ∆d−1, we can write

−u =
d
∑

i=1

d
∑

j=1,j 6=i

āij (ej − ei)

=
d
∑

j=1

j−1
∑

i=1

āij

(

j−1
∑

k=i

wk

)

+
d
∑

j=1

d
∑

i=j+1

āij

(

−
i−1
∑

k=j

wk

)

=

d−1
∑

k=1

(

k
∑

i=1

d
∑

j=k+1

āij −
d
∑

i=k+1

k
∑

j=1

āij

)

wk.

Suppose u belongs to the positive cone spanned by B1=̇ {w1, ..., wd−1}, the other

cases can be treated similarly. Then although the choice of {āij} in the equation

above is not unique,
∑k

i=1

∑d
j=k+1 āij −

∑d
i=k+1

∑k
j=1 āij is uniquely determined for

k = 1, ..., d− 1. Recalling ‖u‖1 =
∑

v∈V uv, we see that

‖u‖1 = −
d−1
∑

k=1

(

k
∑

i=1

d
∑

j=k+1

āij −
d
∑

i=k+1

k
∑

j=1

āij

)

=
d
∑

i=1

d
∑

j=1,j 6=i

(i− j) āij. (4.4.3)

We construct the controlled Markov chain such that for k = 1, ..., d− 1, take

ph (x, x+ hwk|u) =

∑d
i=k+1

∑k
j=1 āij −

∑k
i=1

∑d
j=k+1 āij

‖u‖1

, if x+ hwk ∈ Sh

and ph (x, y|u) = 0 otherwise. Also, set

∆th (u) =
h

‖u‖1

.
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u

u1

u2

e2 − e1

e3 − e2

e1 − e3

Figure 4.1: Controlled random walks using the widest neighborhood structure for d = 3
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One can check such a choice of ph and ∆th satisfies (4.3.1) and (4.3.2). We then

solve the following unconstrained minimization problem

inf
{āij}

{

d−1
∑

k=1

∑d
i=k+1

∑k
j=1 āij −

∑k
i=1

∑d
j=k+1 āij

‖u‖1

V (x+ hwk)

+

(

d
∑

i=1

d
∑

j=1,j 6=i

αij (x) `

(

āij

αij (x)

)

)

h

‖u‖1

}

, (4.4.4)

where ‖u‖1 is defined by (4.4.3), and then check if the optimal control u of each

candidate infimizer stays in the interior of the positive cone. If it does, then the

unique local minimum of the constaint optimization problem is found, and we obtain

the global minimum of (4.4.2).

Let A = ‖u‖1, we introduce the Lagrange multiplier λ ∈ R and study

{

d−1
∑

k=1

∑d
i=k+1

∑k
j=1 āij −

∑k
i=1

∑d
j=k+1 āij

A
V (x+ hwk)+

(

d
∑

i=1

d
∑

j=1,j 6=i

αij (x) `

(

āij

αij (x)

)

)

h

A
+
λh

A

(

d
∑

i=1

d
∑

j=1,j 6=i

(i− j) āij −A

)}

.(4.4.5)

Recall that for x > 0, ` (x) = x log x− x+ 1. At each local minimum of (4.4.5), the

derivatives with respect to {āij} are zero, which leads to:

−
j−1
∑

k=i

V (x+ hwk) + h log
āij

αij (x)
− (j − i)λh = 0, for 1 ≤ i < j ≤ d

i−1
∑

k=j

V (x+ hwk) + h log
āij

αij (x)
− (j − i)λh = 0, for 1 ≤ j < i ≤ d

Thus we can parameterize for some λ ∈ R,

āij = αij (x) e(j−i)λ+
Pj−1

k=i
V (x+hwk)/h, for 1 ≤ i < j ≤ d

āij = αij (x) e(j−i)λ−Pi−1
k=j

V (x+hwk)/h, for 1 ≤ j < i ≤ d. (4.4.6)
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Denote C =
∑d

i=1

∑d
j=1,j 6=i αij (x). Substituting (4.4.6) into (4.4.4), we have

1

A

[

−
d
∑

j=1

j−1
∑

i=1

αij (x) e(j−i)λ+
Pj−1

k=i V (x+hwk)/h

(

j−1
∑

k=i

V (x+ hwk)

)

+h
d
∑

j=1

j−1
∑

i=1

αij (x) `
(

e(j−i)λ+
Pj−1

k=i
V (x+hwk)/h

)

+
d
∑

j=1

d
∑

i=j+1

αij (x) e(j−i)λ−Pi−1
k=j

V (x+hwk)/h

(

i−1
∑

k=j

V (x+ hwk)

)

+h
d
∑

j=1

d
∑

i=j+1

αij (x) `
(

e(j−i)λ−Pi−1
k=j

V (x+hwk)/h
)

]

=
h

A

[

d
∑

j=1

j−1
∑

i=1

(j − i)λαij (x) e(j−i)λ+
Pj−1

k=i V (x+hwk)/h

−
d
∑

j=1

j−1
∑

i=1

αij (x) e(j−i)λ+
Pj−1

k=i
V (x+hwk)/h

+
d
∑

j=1

d
∑

i=j+1

(j − i)λαij (x) e(j−i)λ−Pi−1
k=j

V (x+hwk )/h

−
d
∑

j=1

d
∑

i=j+1

αij (x) e(j−i)λ−Pi−1
k=j

V (x+hwk)/h + C

]

.

For b = 1, ..., d− 1, define

Kb =
d−b
∑

i=1

d
∑

j=1

δj−i=bαij (x) e
Pj−1

k=i
V (x+hwk)/h

K−b =
d−b
∑

j=1

d
∑

i=1

δj−i=−bαij (x) e−
Pi−1

k=j
V (x+hwk)/h.

We can rewrite

A = −
d−1
∑

k=1

(

k
∑

i=1

d
∑

j=k+1

āij −
d
∑

i=k+1

k
∑

j=1

āij

)

=

d−1
∑

b=1

bK−be
−bλ −

d−1
∑

b=1

bKbe
bλ
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Then (4.4.4) can be further reduced to

h

A

[

d−1
∑

b=1

K−b

(

−bλe−bλ − e−bλ
)

+

d−1
∑

b=1

Kb

(

bλebλ − ebλ
)

+ C

]

= h

(

−λ−
∑d−1

b=1 K−be
−bλ +

∑d−1
b=1 Kbe

bλ − C
∑d−1

b=1 bK−be−bλ −∑d−1
b=1 bKbebλ

)

.

Minimizing this expression with respect to λ, one looks for λ that satisfies

(

−∑d−1
b=1 b

2K−be
−bλ −∑d−1

b=1 b
2Kbe

bλ
)(

∑d−1
b=1 K−be

−bλ +
∑d−1

b=1 Kbe
bλ − C

)

(

∑d−1
b=1 bK−be−bλ −∑d−1

b=1 bKbebλ
)2 = 0.

Take β = eλ, we then look for the positive solutions β to either

d−1
∑

b=−(d−1)

b2Kbβ
b = 0

or
d−1
∑

b=−(d−1)

Kbβ
b − C = 0. (4.4.7)

Recall {Kb} are nonnegative, so the first equation has no positive root. We then

solve for the 2 (d− 1) roots of (4.4.7). Since the single variable polynomial equations

(4.4.7) has only two sign changes between consecutive real coefficients, it follows

from Descartes’ rule of signs that it has at most two positive real roots. For each

positive real root β, one computes λ = log β, and then obtains the value of {āij} by

(4.4.6). If the constraints

d
∑

i=k+1

k
∑

j=1

āij −
k
∑

i=1

d
∑

j=k+1

āij ≥ 0, k = 1, ..., d− 1, (4.4.8)
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are satisfied, one computes the cost

h

(

− log β −
∑d−1

b=1 K−be
−bλ +

∑d−1
b=1 Kbe

bλ − C
∑d−1

b=1 bK−be−bλ −∑d−1
b=1 bKbebλ

)

= −h log β,

for the local minimizer.

4.4.2 Iterative solver: The narrowest neighborhood struc-

ture

Here we present another possible neighborhood structure for the iterations. Recall

that in the case of the widest neighborhood structure, for each cone we need to solve

an algebraic equation (4.4.7) with degree 2d−2, which becomes more complicated as

dimension grows. For the following narrowest possible neighborhood structure the

corresponding equation is always quadratic, but at each x ∈ Sh\Bh we need to solve

constrained infimization problems for a large number (grows as O (d2)) of subregions

(cones), as d gets large.

Let {ẽi}d
i=2 be defined by ẽi = ei−e1, and we set ẽ1 = 0. {ẽ2, ..., ẽd} forms a basis

of ∆d−1. For any x ∈ Sh\Bh take V∗ = V . Using the same notation as in Section

4.4.1, for u ∈ ∆d−1 one can write

−u =

d
∑

i=1

d
∑

j=1,j 6=i

āij (ej − ei) =

d
∑

i=1

d
∑

j=1,j 6=i

āij (ẽj − ẽi)

=

d
∑

i=2

(

d
∑

j=1,j 6=i

āji −
d
∑

j=1,j 6=i

āij

)

ẽi.

Suppose without loss of generality that u belongs to the positive cone spanned by

B̃1 = {ẽ2, ..., ẽd}. Then ‖u‖1 = −∑d
i=2

(

∑d
j=1,j 6=i āji −

∑d
j=1,j 6=i āij

)

=
∑d

i=2 āi1 −
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u

u1

u2

e2 − e1

e3 − e1e3 − e2

e1 − e2

e1 − e3 e2 − e3

Figure 4.2: Controlled random walks using the narrowest neighborhood structure for d = 3

∑d
j=2 ā1j.

We construct the controlled random walk such that for i = 2, ..., d, take

ph (x, x+ hẽi|u) =

∑d
j=1,j 6=i āij −

∑d
j=1,j 6=i āji

‖u‖1

, if x+ hẽi ∈ Sh,

and zero otherwise. Also, set

∆th (u) =
h

‖u‖1

.

Such a choice of ph and ∆th conforms with (4.3.4) and (4.3.5). One then needs to
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solve the following unconstrained minimization problem

inf
{āij}

{

d
∑

i=2

∑d
j=1,j 6=i āij −

∑d
j=1,j 6=i āji

‖u‖1

V (x+ hẽi)

+

(

d
∑

i=1

d
∑

j=1,j 6=i

αij (x) `

(

āij

αij (x)

)

)

h

‖u‖1

}

, (4.4.9)

and then check if the optimal control of each candidate infimizer stays in the interior

of the positive cone. If it does, then the unique local minimum of the constained

optimization problem is found, and we obtain the global minimum of (4.4.2).

Letting B = ‖u‖1, we introduce the Lagrange multiplier λ ∈ R and study

{

d
∑

i=2

∑d
j=1,j 6=i āij −

∑d
j=1,j 6=i āji

B
V (x+ hẽi)+

(

d
∑

i=1

d
∑

j=1,j 6=i

αij (x) `

(

āij

αij (x)

)

)

h

B
+
λh

B

[

d
∑

i=2

āi1 −
d
∑

j=2

ā1j − B

]}

.(4.4.10)

At each local minimum of (4.4.9), the derivatives with respect to {āij} are zero,

which leads to:

−V (x+ hẽj) + V (x+ hẽi) + h log
āij

αij (x)
= 0, for 2 ≤ i, j ≤ d, i 6= j

−V (x+ hẽj) + h log
ā1j

α1j (x)
− λh = 0, for j = 2, ..., d

V (x+ hẽi) + h log
āi1

αi1 (x)
+ λh = 0, for i = 2, ..., d.

Thus we can parametrize for some λ ∈ R,

āij = αij (x) e(V (x+hẽj )−V (x+hẽi))/h, for 2 ≤ i, j ≤ d, i 6= j

ā1j = α1j (x) eλ+V (x+hẽj )/h, for j = 2, ..., d (4.4.11)

āi1 = αi1 (x) e−λ−V (x+hẽi)/h, for i = 2, ..., d.
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Substituting (4.4.11) into (4.4.9), we obtain

1

B

[

d
∑

j=2

[

−α1j (x) eλ+V (x+hẽj )/hV (x+ hẽj) + hα1j (x) `
(

eλ+V (x+hẽj )/h
)]

+

d
∑

i=2

[

αi1 (x) e−λ−V (x+hẽi)/hV (x+ hẽi) + hαi1 (x) `
(

e−λ−V (x+hẽi)/h
)]

+
d
∑

i=2

d
∑

j=2,j 6=i

[αij (x) e(V (x+hẽj )−V (x+hẽi))/h (−V (x+ hẽj) + V (x+ hẽi))

+hαij (x) `
(

e(V (x+hẽj )−V (x+hẽi))/h
)

]
]

.

Note that

hαij (x) `
(

e(V (x+hẽj )−V (x+hẽi))/h
)

= αij (x) e(V (x+hẽj )−V (x+hẽi))/h (−V (x+ hẽi) + V (x+ hẽj))

−hαij (x) e(V (x+hẽj )−V (x+hẽi))/h + hαij (x) .

Thus if we define

K1 =
d
∑

j=2

α1j (x) eV (x+hẽj )/h, (4.4.12)

K2 =
d
∑

i=2

αi1 (x) e−V (x+hẽi)/h (4.4.13)

C =
d
∑

i=1

d
∑

j=1,j 6=i

αij (x)−
d
∑

i=2

d
∑

j=2,j 6=i

αij (x) e(V (x+hẽj )−V (x+hẽi))/h,

we can write

B = −
d
∑

i=2

(

d
∑

j=1,j 6=i

āji −
d
∑

j=1,j 6=i

āij

)

= e−λK2 − eλK1.
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And one can further reduce (4.4.9) to

h

B

(

−e−λK2λ + eλK1λ− e−λK2 − eλK1 + C
)

= h

(

−λ− e−λK2 + eλK1 − C

e−λK2 − eλK1

)

.

Minimizing this expression with respect to λ, one looks for λ that solves

(

e−λK2 + eλK1 −C
) (

e−λK2 + eλK1

)

(e−λK2 − eλK1)
2 = 0.

Since e−λK2 + eλK1 > 0, one obtains

e−λK2 + eλK1 − C = 0,

for which one solves

λ = logα,

with

α =
C ±

√
C2 − 4K1K2

2K1
. (4.4.14)

For each root λ, one computes {āij} by (4.4.11). If the non-negativity constraints

d
∑

j=1,j 6=i

āij −
d
∑

j=1,j 6=i

āji ≥ 0, for i = 2, ..., d, (4.4.15)

are satisfied, one computes cost

h

(

− log α+
K2/α + αK1 − C

K2/α− αK1

)

= −h log α, (4.4.16)

as the local minimum.
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4.4.3 The lower dimensional hyperplanes

To summarize, in the previous two subsections we solve the infimization of (4.4.2)

in the relative interior of each cone. The method is to use Lagrange multipliers to

first solve the corresponding unconstrained problem, and then test the nonnegativity

constraints ((4.4.8) or (4.4.15), depending on the neighborhood structure) for each

candidate minimizer. If none of the candidate minimizer satisfies the constraints,

we will then need to search lower dimensional boundaries of the cones, until a local

minimum is found.

On each lower dimensional boundary, we need to solve a constrained optimization

problem, with additional affine constraint added to (4.4.2). If we still use Lagrange

multiplier, the calculation of the local minimum is very complicated, especially when

the dimension gets further lower (which adds more constraints). In this subsection

we discuss solving the constrained optimizations on these lower dimensional hyper-

planes, using the results in Section 4.4.1 and 4.4.2.

We show that, for k = 1, ..., d− 2, to determine candidate minimizers of (4.4.2)

on some k dimensional boundaries, it suffices to use jointly the candidate minimiz-

ers of (4.4.2) in the relative interior of a cone, and the solution of certain algebraic

equations. The advantage of this approach, is that solving the roots of algebraic

equations can be implemented much more efficiently than solving constrained opti-

mization problems, especially in high dimensions.

To illustrate, let us assume for now that we use the narrowest neighborhood

structure for the interation described in Section 4.4.2 (the other case can be treated

in the same way). Suppose we need to solve the constrained minimum on a d − 2
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dimensional boundary of the positive cone generated by {ẽ2, ..., ẽd}. For i = 2, ..., d,

denote ui =
∑d

j=1,j 6=i āij − ∑d
j=1,j 6=i āji, and suppose the boundary is given by

{

u ∈ ∆d−1 : u2 ≥ 0, ..., ud−1 ≥ 0, ud = 0
}

. We need to solve

inf
u∈∆d−1:u2,...,ud−1≥0

ud=0

[

d
∑

i=2

ph (x, x+ hẽi|u)V h (x+ hẽi) + L (x,−u)∆th (u)

]

= inf
u∈∆d−1:u2,...,ud−1≥0

ud=0

[

d
∑

i=2

ui

‖u‖1

V h (x+ hẽi) + L (x,−u) h

‖u‖1

]

, (4.4.17)

If we solve the corresponding unconstrained infimization problem, the candidate

minimizers are given by (4.4.16).

We now claim the following result. By changing the value of V h (x+ hẽd), to a

particular value V ∗ (if it exists), then (4.4.17) equals to

inf
u∈∆d−1:u2,...,ud−1≥0

[

d−1
∑

i=2

ui

‖u‖1

V h (x+ hẽi) +
ud

‖u‖1

V ∗ + L (x,−u) h

‖u‖1

]

. (4.4.18)

Note that (4.4.18) can be solved using the results in Section 4.4.2. First obtain the

candidate minimizers of the unconstrained problem by (4.4.14), and then check the

nonnegative constraints u2, ..., ud−1 ≥ 0. The value of V ∗ is determined by jointly

solving the algebraic equations

eλ =
C ±

√
C2 − 4K1K2

2K1

,

d−1
∑

j=1

ādj −
d−1
∑

j=1

ājd = 0,

where {ājd (λ, V ∗)} and {ājd (λ, V ∗)} are specified by (4.4.11), K1 (V ∗) and K2 (V ∗)

are given in (4.4.12) and (4.4.13).

To see the claim is true, note that for each such solution V ∗, any candidate
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optimal control u∗ to (4.4.18), obtained via the computation in Section 4.4.2, satisfies

u∗d = 0 (see (4.4.15)). Therefore the value of (4.4.18) is less than or equal to (4.4.17).

The other inequality is straightforward.

This argument works for lower dimensional (d− 3, d − 4, ...) boundaries as well:

one changes a subset of
{

V h (x+ hẽi)
}

to specific values, that are determined by

solving a larger systems of algebraic equations jointly, and use the solution to the

unconstrained optimization problem in a cone in Section 4.4.1 and 4.4.2. Therefore

when search the local minimizer on a lower dimensional boundary, we use the above

recipe and convert the problem into solving a system of algebraic equations.

4.5 Numerical Results

In this section, we present numerical results obtained using the Markov chain ap-

proximation algorithm described in Section 4.3.

In the actual implementation of the algorithm, iterate the dynamical program-

ming equation by

V h
j+1 (x) = inf

u∈∆d−1

[

∑

v∈V
ph (x, x+ hv|u)V h

j (x+ hv) + L (x,−u)∆th (u)

]

. (4.5.1)

Therefore V h
j (x) can be interpreted as the minimal cost of the j−step optimal control

problem with terminal cost V h
0 . If we take the initial data V h

0 , such that for x ∈ Bh,

V h
0 (x) = V (2) (x), and V h

0 (x) = ∞ for x ∈ Sh\Bh, then the optimal control is

forced to move toward the boundary set Bh quickly, and thus the boundary data can

be learned and propagated into the domain quickly. Moreover, the optimal control

interpretation implies that V h
j (x) is monotone decreasing in j, and converges to the
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maximal solution of dynamical programming equation (4.3.7).

As is described in Section 4.2, the quadratic approximation V (2) can be obtained

by solving the algebraic Riccarti equation (4.2.9) for its Hessian. We use the Matlab

build in function to obtain the maximal solution of (4.2.9).

We choose the initial condition to be

V h
0 (x) =











V (2) (x) x ∈ Bh,

M x ∈ Sh\Bh,

where M ∈ (V,∞) is a very large number, so that the iteration (4.5.1) converges

quickly.

For simplicity, we restrict our numerical example below to the case d = 3, and

embed S ⊂ R
3 into G=̇ {(x1, x2) : x1 ≥ 0, x2 ≥ 0, x1 + x2 ≤ 1} by taking an affine

map. We also focus on the nearest neighborhood structure described in Section

4.4.2.

We use Gauss-Seidel iterative method for our numerical experiments. The Gauss-

Seidel iteration goes as follows. During the first iteration, we enforce the value

function to be less than or equal to M by letting

V h
1 (x) = inf

u∈∆d−1

[

∑

v∈V
ph (x, x+ hv|u)V h

0 (x+ hv) + L (x,−u)∆th (u)

]

∧M.

Suppose the value
{

V h
j (x)

}

was assigned to each x ∈ Sh, at the (j + 1)th iteration, we

proceed by sweeping through the grid along six possible jump directions in counter-

clockwise order (such as sweeping successively along the direction e2 − e1, e3 − e1,

e3−e2, e1−e2, e1−e3, e2−e3). During each sweep, we update sequentially the value
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at x ∈ Sh\Bh, by solving (4.4.2), and the new value will be substituted immediately

for calculating (4.4.2) at the neighboring points.

Example 4.5.1. The first example we study is a non-interacting n−particle system

with 3 states, in the sense that we set Γ1,n
ij (·) ≡ 1 in the generator (2.2.1). The

corresponding quasipotential satisfies the Hamilton-Jacobi-Bellman equation

3
∑

i=1

3
∑

j=1,j 6=i

xi exp

(

∂V

∂xj

− ∂V

∂xi

)

− 2 = 0, for x ∈ S\
{(

1

3
,
1

3
,
1

3

)}

V

(

1

3
,
1

3
,
1

3

)

= 0,

which reduces to

x1

(

eDx1V + eDx2V
)

+ x2

(

eDx2V −Dx1V + e−Dx1V
)

+(1 − x1 − x2)
(

eDx1V −Dx2V + e−Dx2V
)

− 2 = 0
x ∈ G\

(

1
3
, 1

3

)

,

V
(

1
3
, 1

3

)

= 0,

by taking the affine map that maps S to G.

The quasipotential of this problem admits an explicit solution (see also (5.9) of

[14])

V (x1, x2, x3) =

3
∑

i=1

xi log xi + log 3.

V is a smooth function on any compact subset of int(S). Its derivative became

unbounded (has logarithmic singularities) when approaching the boundary. As can be

seen from the numerical experiment below, the highest error occurs on the boundary.

Let G1 = {x1 ≥ 0.2, x2 ≥ 0.2, x1 + x2 ≤ 0.8} be a compact subset of G. Let Gh =

G∩ hT
2 and Gh

1 = G1 ∩ hT
2, where T

2 is the two dimensional triangular lattice. Set

M = 99. The numerical results are shown in the table below.
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Table 4.1: Maximal error table of Example 4.5.1

n = 1/h Max Error in Gh
1 Max Error in Gh

10 0.06 0.1512
20 0.0306 0.1160
30 0.0205 0.0927
40 0.0155 0.0772
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Figure 4.3: The graph of V h for h = 1/40 of Example 4.5.1
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Figure 4.4: Numerical errors for h = 1/50 of Example 4.5.1

Example 4.5.2. We now study the Glauber dynamics of Curie-Weiss-Potts model,

described in Example 2.4.2.

It is known that the Curie-Weiss-Potts model has a phase transition behavior.

There exists βc <∞, called the critical inverse temperature, such that for β < βc, the

Markov process defined by (2.2.1) has a unique stationary distribution at δ(1/3,1/3,1/3).

For d = 3, βc = 4 log 2 (see [8]). In other words, (1/3, 1/3, 1/3) is the unique

equilibrium point of (4.1.1). In this temperature regime, the associated quasipotential

satisfies the Hamilton-Jacobi-Bellman equation

3
∑

i=1

3
∑

j=1,j 6=i

xi exp (−βxi)
∑3

k=1 exp (−βxk)

(

exp

(

∂V

∂xj
− ∂V

∂xi

)

− 1

)

= 0, x ∈ S\
{(

1

3
,
1

3
,
1

3

)}

,

V

(

1

3
,
1

3
,
1

3

)

= 0.

We study numerical experiments for β = 0.1, and take x∗ = (0.2, 0.2, 0.6) to be

a representative point in S. Also set M = 99. Some numerical results are shown in
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Table 4.2: The value of V h of Example 4.5.2

n = 1/h V h (x∗)
10 0.2157
20 0.1854
30 0.1749
40 0.1697
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Figure 4.5: The graph of V h for h = 1/40 of Example 4.5.2

the table below.
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The Condition of Schwartz and

Weiss
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In [35] a class of jump Markov process with jump rates vanishing at the boundary

of some set G ⊂ R
d is studied. We now formulate their conditions in our settings.

LetG ⊂ R
d−1 be the image of S under the affine map (x1, ..., xd−1, 1−

∑

i≤d−1 xi) 7→

(x1, ..., xd−1). Then G is convex and compact. By Lemma 1 of [35] G satisfies an

interior cone property with parameters (ε, β): for any x ∈ ∂G, there exists u ∈ R
d−1

such that for each t ∈ (0, ε), one has B (x+ tu, βt) ⊂ G. Also, G can be covered

by a finite number of open balls, and the balls can be chosen to be either centered

on the boundary, or having no intersection with the boundary. Let {Bi} be such a

finite cover, Lemma 1 of [35] shows that one can fix the vectors u of the interior cone

condition to be some constant ui in each region Bi. Moreover, there exists γ such

that if d (x, ∂G) < γ, then d (x+ tui, ∂G) is monotone increasing for t ∈ [0, ε].

In [35] they study the jump Markov process with generator

Ln (f) (x) = n
∑

v∈V
λv (x)

[

f

(

x+
1

n
v

)

− f (x)

]

.

Recall the definition of C {uj} in (3.5.3) as the cone generated by {uj}, and denote

Cx
.
= C {v : v ∈ Vx} .

In [35] the following condition is assumed for the proof of LDP.

Condition A.0.3. The rates and jump directions satisfy the following.

A. There exists a constant Kλ such that for all v ∈ V, |λv (x)− λv (y)| ≤

Kλ ‖x− y‖. Moreover, the rates can be extended to a δ > 0 neighborhood of G,

so that the Lipschitz property still holds.
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B. For each x ∈ ∂G, there is an ε1 > 0 so that y ∈ Cx together with ‖y‖ < ε1

implies x+ y ∈ G.

C. λv (x) > 0 for all v ∈ V and x ∈ Go. Moreover, γ, ε, ui of the interior cone

condition can be chosen so that

ui ∈ C
{

v : inf
x∈Bi

λv (x) > γ

}

and if x ∈ Bi, d (x, ∂G) < γ and λv (x) < γ, then λv (x+ tui) is strictly monotone

increasing for t ∈ (0, ε).

D. C {v : v ∈ V} = R
d−1.

We provide a simple example of a mean field interacting particle system with

K = 1, d = 3 which does not satisfy the strcitly increasing property in Condition

A.0.3.C. The following example is a natural 3 state particle system with a constant

rate of one for transitions 1 → 2, 2 → 3, 3 → 1.

Example A.0.4. Let d = 3 and {αij (·)} specified by α12 (x) = x1, α23 (x) = x2,

α31 (x) = x3, and zero otherwise. Then G = {(x, y) : x ∈ [0, 1] , y ∈ [0, 1] , x+ y ≤ 1}

and V = {e1,−e2, e2 − e1}, λe1 (x) = 1 − x1 − x2, λ−e2 (x) = x2, λe2−e1 (x) =

x1. For x = (1, 0), {v : infx∈Bi
λv (x) > γ} = {e2 − e1}, and by moving along any

ui ∈ C {e2 − e1}, λe1 (x+ tui) = 0, which contradicts the monotone increasing of

λe1 (x+ tui) in t. Similar results hold for x = (0, 1) and x = (0, 0).
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Proof of Theorem 3.3.6
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Recall that h maps a controlled PRM into a controlled process, and is defined in

(3.3.6). Recall also the definitions of A⊗|V|
b and Ā⊗|V|

b in Definitions 3.3.5 and 3.3.2,

respectively. The claim of Theorem 3.3.6 is essentially that the additional dependence

of controls in Ā⊗|V|
b on the “type” of jump is not needed, and that the variational

representation is valid with the simpler controls A⊗|V|
b . We recall that the controls in

Ā⊗|V|
b modulate the intensity of the driving PRM in an s, x and ω dependent fashion,

while the controls in A⊗|V|
b multiply the jump rates λn

v in an s and ω dependent way.

The proof of Theorem 3.3.6 will follow from Lemma 3.3.4, Lemma B.0.8 and

Corollary B.0.7 below. We start with two lemmas which elucidate the relation be-

tween elements of A⊗|V|
b and Ā⊗|V|

b .

Lemma B.0.5. There exists a map Θn : Ā⊗|V|
b → A⊗|V|

b ×D ([0, 1] : S)×Ā⊗|V|
b which

takes ϕ ∈ Ā⊗|V|
b into a triple (α̂n, µ̂n, ϕ̂n), such that for any v ∈ V

1. α̂n
v (s) =

∫ λn
v (µ̂n(s))

0
ϕv (s, x)dx

2. ϕ̂n
v (s, x) = α̂n

v (s)
λn

v (µ̂n(s))
1[0,λn

v (µ̂n(s))](x) + 1[0,λn
v (µ̂n(s))]c(x)

3. µ̂n = h
(

1
n
Nnϕ̂n

, µn (0) , λn
)

.

Note that given any control ϕ ∈ Ā⊗|V|
b , this lemma identifies a structurally simpler

control ϕ̂n ∈ Ā⊗|V|
b .

Proof. We prove the claim by a recursive construction.

1. To begin the recursion set t0 = 0, and given any ϕ ∈ Ā⊗|V|
b , define for s ≥ t0
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and v ∈ V ,

µ̂n,0 (s) = µn (0) ,

α̂n,0
v (s) =

∫ λn
v (µ̂n,0(s))

0

ϕv (s, x) dx,

ϕ̂n,0
v (s, x) =

α̂n,0
v (s)

λn
v (µ̂n,0(s))

1[0,λn
v (µ̂n,0(s))] (x) + 1[0,λn

v (µ̂n,0(s))]c (x) .

In other words, for s > 0 and x inside the compact set [0, λn
v (µ̂n,0(s))], we set ϕ̂n,0

v to

be the average of ϕv (s, ·) over the set, while for x in the complement we set ϕ̂n,0
v = 1.

We see that by construction ‖ϕ̂n,0
v ‖∞ ≤ ‖ϕv‖∞ ∨ 1.

2. Assume now that for some k ∈ N0, tk is well defined,

({ϕ̂n,k
v (s)}, {α̂n,k

v (s)}, {µ̂n,k (s)}) is well defined for s ∈ [0, 1], and

∥

∥ϕ̂n,k
v

∥

∥

∞,[tk,∞)
=̇ sup

(s,x)∈[tk,∞)×R

∣

∣ϕ̂n,k
v (s, x)

∣

∣ ≤ ‖ϕv‖∞ ∨ 1.

For any t ≥ tk and v ∈ V , define

B̂k,v (t) =
{

(s, x, r) : s ∈ [tk, t] , x ∈
[

0, λn
v (µ̂n,k(s))

]

, r ∈
[

0, ϕ̂n,k
v (s, x)

]}

and

tk+1 = inf
{

t > tk such that for some v ∈ V , N̄n
v (B̂k,v (t)) > 0

}

∧ 1.

We define µ̂n,k+1 on [0, 1] by setting µ̂n,k+1 (s) = µ̂n,k (s) for s ∈ [0, tk+1]. At tk+1,

update µ̂n,k+1 by setting

µ̂n,k+1 (tk+1) = µ̂n,k (tk)

+
∑

v∈V
v

∫

[tk,tk+1)

∫

Y
1[0,λn

v(µ̂n,k(s))](x)

∫

[0,∞)

1[0,ϕ̂n,k
v (s,x)](r)

1

n
N̄n

v (dsdxdr),
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and set µ̂n,k+1 (s) = µ̂n,k+1 (tk+1) for s ∈ [tk+1, 1]. Define

α̂n,k+1
v (s) =

∫ λn
v (µ̂n,k+1(s))

0

ϕv (s, x)dx,

ϕ̂n,k+1
v (s, x) =

α̂n,k+1
v (s)

λn
v (µ̂n,k+1(s))

1[0,λn
v (µ̂n,k+1(s))] (x) + 1[0,λn

v (µ̂n,k+1(s))]
c (x) .

We also have
∥

∥ϕ̂n,k+1
v

∥

∥

∞,[tk+1,∞)
≤ ‖ϕv‖∞ ∨ 1.

3. Recall M
′

defined as in (3.3.5). Since N̄n
v has a.s. finitely many atoms on

[0, 1] × [0,M
′
] × [0, ‖ϕv‖∞], the construction will produce functions defined on [0, 1]

in L <∞ steps. Then set

µ̂n (s) = µ̂n,L (s) , α̂n
v (s) = α̂n,L

v (s) , ϕ̂n
v (s) = ϕ̂n,L

v (s) , if s ∈ [0, 1].

Then ϕ̂n ∈ Ā⊗|V|
b . Furthermore, by construction

µ̂n = h

(

1

n
Nnϕ̂n

, µn (0) , λn

)

.

The next lemma shows that from controls in A⊗|V|
b we can produce corresponding

controls in Ā⊗|V|.

Lemma B.0.6. There exists a map Ξn : A⊗|V|
b → D ([0, 1] : S) × Ā⊗|V| which takes

ᾱ ∈ A⊗|V|
b into a pair (µ̄n, ϕ̄), such that µ̄n = h

(

1
n
Nnϕ̄, µn (0) , λn

)

, where for v ∈ V,

ϕ̄v (s, x) = ᾱv(s)
λn

v (µ̄n(s))
1[0,λn

v (µ̄n(s))](x) + 1[0,λn
v (µ̄n(s))]c(x).
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Proof. 1. Define t0 = 0 and for any ᾱ ∈ A⊗|V|
b , s ≥ t0 and v ∈ V , define

µ̄n,0 (s) = µn (0) ,

ϕ̄0
v (s, x) =

ᾱv (s)

λn
v (µ̄n,0(s))

1[0,λn
v (µ̄n,0(s))] (x) + 1[0,λn

v (µ̄n,0(s))]c (x) .

2. Assume now that for some k ∈ N, tk is well defined, and that
(

µ̄n,k (s) ,
{

ϕ̄k
v (s)

})

is well defined for s ≥ tk. For any t ≥ tk, define

Āk,v (t) =
{

(s, x, r) : s ∈ [tk, t] , x ∈
[

0, λn
v

(

µ̄n,k(s)
)]

, r ∈
[

0, ϕ̄k
v (s, x)

]}

and

tk+1 = inf
{

t > tk such that for some v ∈ V , N̄n
v

(

Āk,v (t)
)

> 0
}

∧ 1.

We define µ̄n,k+1 on [0, 1] by setting µ̄n,k+1 (s) = µ̄n,k (s) for s ∈ [0, tk+1]. At tk+1,

update µ̄n,k+1 by

µ̄n,k+1 (tk+1) = µ̄n,k (tk)

+
∑

v∈V
v

∫

[tk,tk+1)

∫

Y
1[0,λn

v(µ̄n,k(s))](x)

∫

[0,∞)

1[0,ϕ̄k
v(s,x)](r)

1

n
N̄n

v (dsdxdr),

and set µ̄n,k+1 (s) = µ̄n,k+1 (tk+1) for s ∈ [tk+1, 1]. Define

ϕ̄k+1
v (s, x) =

ᾱv (s)

λn
v (µ̄n,k+1(s))

1[0,λn
v(µ̄n,k+1(s))] (x) + 1[0,λn

v(µ̄n,k+1(s))]
c (x) .

3. Since N̄n
v has a.s. finitely many atoms on [0, 1] × [0, ‖ᾱv‖∞], the construction
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will produce functions defined on [0, 1] in L <∞ steps. Then set

µ̄n (s) = µ̄n,L (s) , ϕ̄v (s) = ϕ̄L
v (s) , s ∈ [0, 1].

Note that

ϕ̄v (s, x) =
ᾱv(s)

λn
v (µ̄n(s))

1[0,λn
v (µ̄n(s))](x) + 1[0,λn

v (µ̄n(s))]c(x)

and µ̄n satisfies

µ̄n = h

(

1

n
Nnϕ̄, µn (0) , λn

)

.

The next result is a corollary to the construction in Lemma B.0.6.

Corollary B.0.7. For any {ᾱv} ∈ A⊗|V|
b given and t ∈ [0, 1], Ξn

1 (ᾱ) (t) (defined in

Lemma B.0.6) has the same distribution as Λn (ᾱ, µn (0)) (t), where Λn is as defined

in (3.3.9).

Proof. Recall that µ̄n = Ξn
1 (ᾱ). We have Ξn

1 (ᾱ) (0) = µn (0). Given s ∈ [0, 1], the

total jump intensity of µ̄n (s) in the direction v is

∫ λn
v (µ̄n(s))

0

ϕ̄v (s, x) dx =

∫ λn
v (µ̄n(s))

0

ᾱv(s)

λn
v (µ̄n(s))

dx = ᾱv(s)

which is the same as that of Λn (ᾱ, µn (0)) (s).

Lemma B.0.8. Let Ab, Āb and Ā be as defined in Definition 3.3.5, Definition 3.3.2
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and Definition 3.3.1 respectively. Then for F ∈Mb (S),

inf
ϕ∈Ā⊗|V|

b

Ē

[

∑

v∈V
L1(ϕv) + F (µ̄n) : µ̄n = h

(

1

n
Nnϕ, µn (0) , λn

)

]

= inf
ϕ∈Ā⊗|V|

Ē

[

∑

v∈V
L1(ϕv) + F (µ̄n) : µ̄n = h

(

1

n
Nnϕ, µn (0) , λn

)

]

= inf
ᾱ∈A⊗|V|

b

Ē

[

∑

v∈V

∫ 1

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt+ F (µ̄n) : µ̄n = Ξn
1 (ᾱ)

]

,

where Ξn is as defined in Lemma B.0.6.

Proof. The first equality is a consequence of Theorem 2.4 of [5]. To prove the rest

of the claim, for ᾱ ∈ A⊗|V|
b fixed, let (µ̄n, ϕ̄) = Ξn (ᾱ). Then by definition ϕ̄ ∈ Ā⊗|V|,

and
∑

v∈V

∫ ∞

0

∫ 1

0

` (ϕ̄v (t, x)) dtdx =
∑

v∈V

∫ 1

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt.

Now it follows from Lemma B.0.6 that

inf
ϕ∈Ā⊗|V|

Ē

[

∑

v∈V
L1(ϕv) + F (µ̄n) : µ̄n = h

(

1

n
Nnϕ, µn (0) , λn

)

]

≤ Ē

[

∑

v∈V
L1(ϕ̄v) + F ◦ h

(

1

n
Nnϕ̄, µn (0) , λn

)

]

= Ē

[

∑

v∈V

∫ 1

0

λn
v (µ̄n(t)) `

(

ᾱv(t)

λn
v (µ̄n(t))

)

dt+ F (µ̄n)

]

.

The reverse inequality is proved by a convexity argument. Recall the definition of

Θn given in Lemma B.0.5. For given ϕ ∈ Ā⊗|V|
b , let (ᾱ, µ̄n) =̇ (Θn

1 (ϕ) ,Θn
2 (ϕ)). Then
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ᾱ ∈ A⊗|V|
b . By convexity of ` (·) and Jensen’s inequality,

∫ ∞

0

∫ 1

0

` (ϕv (s, x)) dsdx

≥
∫ 1

0

λn
v (µ̄n(s))

(

1

λn
v (µ̄n(s))

∫ λn
v (µ̄n(s))

0

` (ϕv (s, x)) dx

)

ds

≥
∫ 1

0

λn
v (µ̄n(s)) `

(

1

λn
v (µ̄n(s))

∫ λn
v (µ̄n(s))

0

ϕv (s, x) dx

)

ds

=

∫ 1

0

λn
v (µ̄n(s)) `

(

ᾱv (s)

λn
v (µ̄n(s))

)

ds

Summing over v ∈ V , applying Lemma B.0.6 and infimizing over ᾱ ∈ A⊗|V|
b we

obtain the desired result.
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Appendix C

Proof of Theorem 3.4.1
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Proof. The idea is to use uniformization to representXn−Y n as a jump process with

(well controlled) small jump rates. Since λn
v (·) , λv (·) are bounded by some constant

C , let γ=̇ |V| (C + 1). Also denote q (x) =
∑

v∈V λv (x) and qn (x) =
∑

v∈V λ
n
v (x).

We then define the uniformized transition matrices on Sn

P

(

x, x+
1

n
v

)

=
λv (x)

γ
, P (x, x) = 1 − q (x)

γ

P n

(

x, x+
1

n
v

)

=
λn

v (x)

γ
, P n (x, x) = 1 − qn (x)

γ
.

And let X̃n, Ỹ n be the Markov chain on Sn starting at x, and with transition matrix

P, P n respectively. Let Nt be a Poisson process with rate γ, and is independent of

X̃n
t and Ỹ n

t . Then X̃n
Nt
, Ỹ n

Nt
has the same distribution as Xn

t , Y
n
t , respectively. It

then suffices to couple X̃n and Ỹ n so that their displacement is a Markov chain with

small transition rate.

We can construct a coupling
(

X̄n, Ȳ n
)

of X̃n and Ỹ n as follows. We define a

Markov chain on Sn × Sn that starts at (x, x) and with transition probability that

for each v ∈ V ,

(x, y) →
(

x+
1

n
v, y +

1

n
v

)

with probability min {λv (x) , λn
v (y)} /γ

(x, y) →
(

x+
1

n
v, y

)

with probability (λv (x) − λn
v (y))+ /γ

(x, y) →
(

x, y +
1

n
v

)

with probability (λv (x) − λn
v (y))− /γ

and stay at (x, y) otherwise. Let Z̄n = X̄n − Ȳ n, then Z̄n (0) = 0, and it jumps in

some direction v ∈ V with probability at most

|λv (x) − λn
v (y)| /γ ≤ (C ‖x− y‖ +O (1/n)) /γ, if the current position is x − y.

Thus Xn
t − Y n

t has the same distribution as Zn
t =̇Z̄n

Nt
, which is a Markov process

starts at 0 and jumps in some direction v ∈ V with rates at most C ‖x− y‖ +
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O (1/n) for some C < ∞. And it sufficess to get an superexponential bound for

P
(

supt∈[0,1] ‖Zn (t)‖ > δ
)

.

If Zn were on one dimensional lattice 1
n
N this bound is implied by Theorem

3.6.1. Let W n be a birth process on 1
n
N which jumps to the right neighbor with rate

qx,x+1/n = Cx + C2/n, for some C2 large enough, and stay at x otherwise. By the

comparison principle of ODE, it follows that P1d (Zn (t) ≥ c) ≤ P1d (W n (t) ≥ c) for

any c > 0 and t ∈ [0, 1]. Thus

P1d

(

sup
t∈[0,1]

|Zn (t)| > δ

)

≤ P1d

(

sup
t∈[0,1]

|W n (t)| > δ

)

≤ P1d (|W n (1)| > δ)

≤ 1

(δn)!

δn
∏

j=1

(Cj/n+ C2/n)

=

(

C

n

)δn(
C2/C + δn

C2/C

)

≤
(

C

n

)δn

(C2/C + δn)C2/C

which goes to 0 superexponentially as n→ ∞.

The general result follows from one dimensional path counting. For n sufficiently
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large, we have

P

(

sup
t∈[0,1]

‖Zn (t)‖ > δ

)

≤ P (Zn jumps at least δn lattice steps in [0, 1])

≤
∞
∑

k=δn

P (Zn jumps k lattice steps in [0, 1])

≤
∞
∑

k=δn

# {lattice path in Sn with length k} · P1d

(

sup
t∈[0,1]

|Zn (t)| > k/n

)

≤
∞
∑

k=δn

(2d)k [C/n]k (k + C2/C)C2/C

≤
∞
∑

k=δn

(2d)k [C/n]k/2

=
[

4d2C/n
]δn/2 1

1 − 4d2C/n
,

where the last inequality follows from the fact that [C/n]k/2 (k + C2/C)C2/C < 1 for

n sufficiently large. Therefore

−1

n
log P

(

sup
t∈[0,1]

‖Zn (t)‖ > δ

)

≥ −1

n

(

δn

2
log
[

4d2C/n
]

+ C3

)

≥ δ

2
logn+ C4,

for some C3, C4 > 0. The expression goes to ∞ as n→ ∞.
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